首页> 外文期刊>Biomedical signal processing and control >LR-cGAN: Latent representation based conditional generative adversarial network for multi-modality MRI synthesis
【24h】

LR-cGAN: Latent representation based conditional generative adversarial network for multi-modality MRI synthesis

机译:LR-Cgan:基于潜在的多种式MRI合成的条件生成对抗网络

获取原文
获取原文并翻译 | 示例

摘要

Objective: This work aims to synthesize a real-like missing MRI modality using multiple modalities those already obtained, thus providing more abundant diagnostic information, and promoting the improvement of some downstream tasks, such as segmentation and diagnosis.Methods: With an adversarial network modelling the nonlinear mapping between the inputs and the output, our proposed LR-cGAN extracts the inherent latent representations from different MRI modalities with N collaboratively trained encoders, and fuses them by a latent space processing network (LSPN) composed of several residual blocks. Apart from L1 loss, the image gradient difference loss (GDL) is considered additionally as the objective function to alleviate the problem of insufficient image sharpening. To validate the effectiveness of LR-cGAN, corresponding experiments were evaluated by peak SNR (PSNR), structural similarity index (SSIM) and normalized root-mean-square error (NRMSE) on BRATS 2015 dataset.Results: Compared to single-modality input, two-modality input improves the synthesis results by 1.196 dB PSNR, 0.019 SSIM and 0.04 NRMSE. With more inputs added, the synthesis performance exhibits an increasing trend. Once any key component, that is, LSPN, GDL loss or adversarial loss, is removed, the quality of the results will reduce to a lower level, proving their contributions to our model. Meanwhile, the final performance of our LR-cGAN network outperforms REPLICA, M-GAN, MILR and sGAN in all metrics on different synthesis tasks, demonstrating its superiority.Conclusion: Our proposed LR-cGAN has the flexible ability of receiving multiple modalities and generating realistic images compared to real modality images, having the potential to supplement diagnostic information in clinical.
机译:目的:这项工作旨在使用已经获得的多种模式合成实际缺失的MRI模型,从而提供更丰富的诊断信息,并促进一些下游任务的改进,例如分段和诊断。方法:具有对抗网络建模输入和输出之间的非线性映射,我们所提出的LR-CGAN从不同的MRI模式中提取来自N个协作训练的编码器的不同MRI模式的固有潜在表示,并通过由几个残差块组成的潜在空间处理网络(LSPN)来熔化它们。除了L1损耗之外,图像梯度差异损失(GDL)还被认为是减轻图像锐化不足问题的目标函数。为了验证LR-Cgan的有效性,通过峰值SNR(PSNR),结构相似性指数(SSIM)和Brats 2015 DataSet上的标准化根均方误差(NRMSE)评估相应的实验。结果:与单模输入相比,两种方式输入通过1.196 dB PSNR,0.019 SSIM和0.04 NRMSE来改善合成结果。添加更多输入,合成性能表现出越来越大的趋势。一旦任何关键组成部分,即LSPN,GDL丢失或对抗损失,结果的质量将减少到较低的水平,证明他们对我们模型的贡献。同时,我们的LR-CGAN网络的最终表现优于不同综合任务的所有指标的复制品,M-GAN,MILR和SAGAG,展示其优势。结论:我们提出的LR-CGAN具有接收多种方式和产生的灵活能力现实图像与真实的模态图像相比,具有临床中补充诊断信息的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号