首页> 外文期刊>Biomedical signal processing and control >Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system
【24h】

Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system

机译:基于电机图像的脑电脑界面系统传输学习的时空时间接头稀疏优化

获取原文
获取原文并翻译 | 示例

摘要

Motor imagery-based brain-computer interface (MI-BCI) is widely considered as the most promising BCI. Nonstationary of EEG data and long BCIs' calibration time are main problems that affect the practicability of MIBCI. In this paper, we propose a new algorithm, i.e. spatio-time-frequency joint sparse optimization algorithm with transfer learning (STFSTL) to achieve satisfactory classification accuracy with small training set. By introducing artificial bee colony (ABC) algorithm and least absolute shrinkage and selection operator (LASSO), the algorithm optimized parameters in spatial domain, time domain and frequency domain simultaneously. The similarity between data was measured by Euclidean distance. Through instanced-based transfer learning, the source data which was most similar to the target data was selected as the auxiliary data to train the target classifier. We evaluated the performance of the proposed algorithm on three data sets, including a private data set and two public data sets. The classification accuracy of the proposed algorithm with one fifth of the training data was higher than that of five other algorithms. Paired t-test analysis revealed that the accuracy of STFSTL and that of five other algorithms were significantly different. The experimental results suggested that the proposed algorithm with less target data can effectively achieve higher classification accuracy than traditional algorithms. It's likely to have a broad application prospect in MI-BCI.
机译:基于电机图像的脑电脑界面(MI-BCI)被广泛认为是最有前途的BCI。 EEG数据和LONG BCIS校准时间的非标准是影响MIBCI实用性的主要问题。在本文中,我们提出了一种新的算法,即转移学习(STFSTL)的时空频率联合稀疏优化算法,实现了小型训练集的令人满意的分类准确性。通过引入人造蜜蜂殖民地(ABC)算法和最低绝对收缩和选择运算符(套索),算法同时在空间域,时域和频域中的优化参数。通过欧几里德距离测量数据之间的相似性。通过基于实例的传输学习,选择与目标数据最相似的源数据作为训练目标分类器的辅助数据。我们在三个数据集中评估了所提出的算法的性能,包括私有数据集和两个公共数据集。具有五分之一训练数据的提出算法的分类准确性高于其他五种算法。配对T检验分析显示,STFSTL的准确性和五种其他算法的准确性显着不同。实验结果表明,具有较少目标数据的算法可以有效地实现比传统算法更高的分类精度。 Mi-BCI可能有一个广泛的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号