首页> 外文期刊>Biomedical signal processing and control >Motor imagery EEG signal classification using upper triangle filter bank auto-encode method
【24h】

Motor imagery EEG signal classification using upper triangle filter bank auto-encode method

机译:电机图像EEG信号分类使用上三角滤波器组自动编码方法

获取原文
获取原文并翻译 | 示例

摘要

In motor-imagery-based brain-computer interfaces, the frequency, and spatial information of electroencephalography signals can be used to improve the performance of motor imagery classification. However, the problem of subject-specific frequency band selection occurs frequently in spatial feature extraction. In this study, to enhance the frequency information in a spatial filter, we design an upper triangle filter bank to determine discriminative frequency components and apply the common spatial pattern to extract spatial features from subbands. Furthermore, an autoencoder neural network is constructed to reduce the high dimensionality of spatial features. The classification performance of the proposed method is experimentally evaluated on motor imagery datasets. The proposed method provides more discriminative features and higher classification performance in comparison with competing algorithms. This proposed filter bank method can be used to extend the other spatial and spectral processing method for motor imagery classification.
机译:在基于电动机的大脑 - 计算机接口中,脑电图信号的频率和空间信息可用于提高电动机图像分类的性能。然而,在空间特征提取中经常发生主题特定频带选择的问题。在本研究中,为了增强空间滤波器中的频率信息,我们设计上三角滤波器组以确定判别频率分量并应用公共空间模式以从子带中提取空间特征。此外,构造自动统计器神经网络以减少空间特征的高维度。所提出的方法的分类性能在实验上对电动机图像数据集进行了评估。与竞争算法相比,该方法提供了更多的辨别特征和更高的分类性能。该提出的滤波器组方法可用于扩展电动机图像分类的其他空间和光谱处理方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号