首页> 外文期刊>Biomedical signal processing and control >SSVEP signal classification and recognition based on individual signal mixing template multivariate synchronization index algorithm
【24h】

SSVEP signal classification and recognition based on individual signal mixing template multivariate synchronization index algorithm

机译:基于单个信号混合模板多变量同步索引算法的SSVEP信号分类和识别

获取原文
获取原文并翻译 | 示例

摘要

With the development of automation technology, Brain Computer Interface (BCI) has been increasingly integrated into people's daily life, among which Steady State Visual Evoked Potential (SSVEP) has attracted much attention due to its high signal-to-noise ratio (SNR) and wide application scenarios. To improve the classification accuracy of SSVEP signals, a novel individual signal mixing template multivariate synchronization index algorithm (IST-MSI) was proposed in this paper, which incorporated individual training template and individual harmonic sensitivity coefficient into the standard MSI algorithm. Specifically, the proposed method first enlarged the frequency-domain power spectrum of the fundamental frequency and its harmonics to reduce the redundant information in the individual training template. The synchronization index values at non-target frequency identified by MSI algorithm are significantly reduced through unequal ratio scaling of harmonic sensitivity co-efficient, thereby improving the SSVEP recognition. The experimental results showed that under the signal length of 1.2 s, the average classification accuracy of IST-MSI algorithm reached 84.3 % in six target frequencies, which was 5.8 % higher than that of standard MSI algorithm. This study confirmed the efficacy of the proposed IST-MSI algorithm for SSVEP recognition, demonstrating its promise in developing an improved BCI system.
机译:随着自动化技术的发展,脑电脑界面(BCI)越来越纳入人们的日常生活中,其中稳态视觉诱发潜力(SSVEP)由于其高信噪比(SNR)和广泛的应用方案。为了提高SSVEP信号的分类精度,本文提出了一种新颖的单独信号混合模板多变量同步算法(IST-MSI),该纸张包含单独的训练模板和个人谐波敏感系数进入标准MSI算法。具体地,所提出的方法首先放大基本频率的频域功率谱及其谐波,以减少各个训练模板中的冗余信息。通过对MSI算法识别的非目标频率下的同步指数值通过不平衡的谐波灵敏度的共同效率而显着降低,从而提高了SSVEP识别。实验结果表明,在1.2秒的信号长度下,IST-MSI算法的平均分类精度在六个目标频率下达到84.3%,比标准MSI算法高5.8%。本研究证实了拟议的IST-MSI算法对SSVEP识别的功效,证明了其在开发改进的BCI系统方面的承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号