首页> 外文期刊>Biomedical signal processing and control >A Novel Methodology to study the Cognitive Load Induced EEG Complexity Changes: Chaos, Fractal and Entropy based approach
【24h】

A Novel Methodology to study the Cognitive Load Induced EEG Complexity Changes: Chaos, Fractal and Entropy based approach

机译:研究认知载荷诱导的EEG复杂性的新方法变化:混沌,分形和熵基方法

获取原文
获取原文并翻译 | 示例

摘要

Background: Dynamic Systems Theory (DST) can provide both the conceptual framework and literal description of the underlying complexity dynamics associated with human cognition, specifically during information processing of the brain under the effect of an external stimuli.Proposed Method: To study the complexity changes during cognitive loading of the brain using Largest Lyapunov Exponent (LLE), Higuchi Fractal Dimension (HFD) and Sample Entropy (SampEn) as a multiparametric signature of cognitive processing. The proposed methodology demonstrates joint Time-Space representation of the various Brain Rhythms under four different classes of Cognitive Tasks (Emotion, Focus, Memory and Problem Solving) given to four subjects. The raw EEG signal is acquired using a 19 channel EEG machine, denoised using Wavelet packet decomposition technique. Brain waves are extracted using the scalogram plot. The parameters are calculated for each channel over a 2 min analysis window sliding through the whole length.Results: These parameters were able to classify between different cognitive states, such as Emotion, Focus, Memory and Problem Solving with an accuracy of 99%.Comparison of Existing Method: Previous works haven't addressed complexity changes during cognitive processing using DST. Earlier studies explain average topographical map of the brain for a fixed time window where as, we have presented the topographical map over a customizable fixed time sliding window.Conclusion: The cubic representation of the brain map containing non-linear parameters can prove to be a significant visualization tool for monitoring effects of cognitive loading using DST proponents as biomarker.
机译:背景:动态系统理论(DST)可以提供与人类认知相关的潜在复杂性动态的概念框架和文字描述,特别是在外部刺激方法的效果下的大脑的信息处理期间:研究复杂性变化在使用最大Lyapunov指数(LLE)的大脑的认知加载期间,HIGUCHI分形尺寸(HFD)和样本熵(SAMPEN)作为认知处理的多级签名。所提出的方法表明,在给予四个科目的四个不同类别的认知任务(情感,焦点,记忆和问题)下的四个不同类别的脑节律的联合时空表示。使用19声道EEG机器获取原始EEG信号,使用小波分组分解技术去噪。使用缩放图提取脑波。对于通过整个长度滑动的2分钟分析窗口的每个通道计算参数。结果:这些参数能够在不同的认知状态之间分类,例如情绪,焦点,记忆和问题,精度为99%.Comparison现有方法:以前的作品在使用DST的认知处理过程中没有解决复杂性变化。早期的研究解释了大脑的平均地形地图,用于固定的时间窗口,其中我们已经在可定制的固定时间滑动窗口上呈现了地形图。结论:包含非线性参数的大脑地图的立方表示可以证明是一个用于监测认知载荷用DST支持者作为生物标志物的效果的显着可视化工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号