首页> 外文期刊>Biomedical signal processing and control >A novel reconstruction approach combining OSEM and split Bregman method for low dose CT
【24h】

A novel reconstruction approach combining OSEM and split Bregman method for low dose CT

机译:一种新的重建方法,组合OSEM和分裂BREGMAN方法低剂量CT

获取原文
获取原文并翻译 | 示例

摘要

Purpose: Low dose CT imaging is an important research hotspot in the field of medical imaging. On the condition of low dose scanning, the commonly used filtered back projection (FBP) algorithm in the case of normal dose cannot meet the requirements with low signal-to-noise ratio (SNR), stripe artifacts and other problems. The algorithms of statistical iteration type can better handle low dose projection data. Existing regularization methods have been shown to deal with this problem to a large extent. Because their regular items are fixed, their adaptability to low dose conditions is not well. The main purpose of this paper is to explore the new method to improve the quality of CT reconstruction image at low dose condition.Methods: A novel approach is proposed based on OSEM and split Bregman method (OSEM-SBTV) for low dose CT. It includes two steps: OSEM solving image reconstruction and split Bregman method solving total variation denoising.Results: Compared with OSEM, results show that OSEM-SBTV has better performance in suppressing noise and smoothing than the classical OSEM. For comparison of profiles of Tikhonov, L1 and TV regularization models, the results of Ll norm are most affected by noise, and the profiles fluctuate greatly. The profile results of Tikhonov and TV norm are over smooth, which results in no representation of the profile information of the middle circle of the image at all in the middle of the profile.Conclusions: The proposed approach can keep the reconstructed image smooth while maintaining the fine structure. This is a good approach to deal with low dose CT image reconstruction. (C) 2020 Elsevier Ltd. All rights reserved.
机译:目的:低剂量CT成像是医学成像领域的重要研究热点。在低剂量扫描的情况下,在正常剂量的情况下,常用的滤波后投影(FBP)算法不能满足具有低信噪比(SNR),条纹伪像和其他问题的要求。统计迭代类型的算法可以更好地处理低剂量投影数据。已显示现有的正则化方法在很大程度上将此问题处理。因为它们的常规物品是固定的,因此它们对低剂量条件的适应性并不良好。本文的主要目的是探讨提高低剂量条件下CT重建图像质量的新方法。方法:基于OSEM和拆分Bregman方法(OSEM-SBTV)的低剂量CT提出了一种新方法。它包括两个步骤:OSEM解决图像重建和拆分BREGMAN方法解决总体变异去噪。结果:与OSEM相比,结果表明,OSEM-SBTV在抑制噪声和平滑方面的性能比经典OSEM更好。为了比较Tikhonov,L1和电视正则化模型的谱,LL规范的结果受到噪声的影响最大,并且曲线大大波动。 Tikhonov和TV Norm的轮廓结果是过度的,这导致剖面中的图像中间圆的简档信息的表现形式。结论:所提出的方法可以保持重建的图像在保持时平滑细结构。这是处理低剂量CT图像重建的良好方法。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Biomedical signal processing and control》 |2020年第9期|102095.1-102095.9|共9页
  • 作者单位

    Hangzhou Dianzi Univ Coll Comp Sci Hangzhou 310018 Zhejiang Peoples R China|Minist Ind & Informat Technol China Key Lab Intelligent Image Anal Sensory & Cognit H Hangzhou 310018 Zhejiang Peoples R China;

    Hangzhou Dianzi Univ Coll Comp Sci Hangzhou 310018 Zhejiang Peoples R China|Nankai Univ Coll Life Sci Tianjin 300071 Peoples R China;

    Hangzhou Dianzi Univ Coll Comp Sci Hangzhou 310018 Zhejiang Peoples R China|Minist Ind & Informat Technol China Key Lab Intelligent Image Anal Sensory & Cognit H Hangzhou 310018 Zhejiang Peoples R China;

    Hangzhou Dianzi Univ Coll Comp Sci Hangzhou 310018 Zhejiang Peoples R China|Minist Ind & Informat Technol China Key Lab Intelligent Image Anal Sensory & Cognit H Hangzhou 310018 Zhejiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Low dose CT; Image reconstruction; OSEM-SBTV; Split Bregman iteration; Regularization;

    机译:低剂量CT;图像重建;OSEM-SBTV;分裂BREGMAN迭代;正规化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号