机译:基于新型聚类技术对司机疲劳检测的多通道EEG特征的最佳成像
Dalian Univ Technol Fac Elect Informat & Elect Engn Sch Biomed Engn Dalian 116024 Peoples R China|Dalian Univ Technol Liaoning Key Lab Integrated Circuit & Biomed Elec Dalian 116024 Peoples R China;
Dalian Univ Technol Fac Elect Informat & Elect Engn Sch Biomed Engn Dalian 116024 Peoples R China;
Dalian Univ Technol Fac Elect Informat & Elect Engn Sch Biomed Engn Dalian 116024 Peoples R China|Univ Jyvaskyla Fac Informat Technol Mattilanniemi 2 FIN-40014 Jyvaskyla Finland|Dalian Univ Technol Fac Elect Informat & Elect Engn Sch Artificial Intelligence Dalian 116024 Peoples R China|Dalian Univ Technol Liaoning Key Lab Integrated Circuit & Biomed Elec Dalian 116024 Peoples R China;
Univ Jyvaskyla Fac Informat Technol Mattilanniemi 2 FIN-40014 Jyvaskyla Finland;
Univ Jyvaskyla Fac Informat Technol Mattilanniemi 2 FIN-40014 Jyvaskyla Finland;
Univ Jyvaskyla Dept Psychol Mattilanniemi 6 FI-40014 Jyvaskyla Finland;
Fatigue detection; EEG; Signal processing; Brain network; Clustering;
机译:通过基于多通道脑电图和未经校正的肌电图的新型回归技术,优化皮层肌肉相干性成像。
机译:基于不同熵特征集的基于EEG的驾驶员疲劳检测性能的噪声稳健性分析
机译:基于不同熵特征集的基于EEG的驾驶员疲劳检测性能的噪声稳健性分析
机译:基于多通道小波特征无监督聚类的彩色场景图像文本检测
机译:使用无监督聚类技术的超声图像斑点检测
机译:基于单个EEG通道的驾驶员疲劳检测的不同特征和分类器的比较
机译:基于adaBoost分类器和脑电信号自动检测驾驶员疲劳