首页> 外文期刊>Biomedical signal processing and control >Detection of Parkinson's Disease from gait using Neighborhood Representation Local Binary Patterns
【24h】

Detection of Parkinson's Disease from gait using Neighborhood Representation Local Binary Patterns

机译:使用邻里代表局部二元模式检测来自步态的帕金森病

获取原文
获取原文并翻译 | 示例

摘要

Parkinson's Disease (PD) is a neurodegenerative disease that affects millions of people around the world. Diagnostics tools based on the clinical symptoms have been developed by the scientific community mostly in the last decade. This study proposes a new method of PD detection from gait signals, using artificial neural networks and a novel technique framework called Neighborhood Representation Local Binary Pattern (NR-LBP). Vertical Ground Reaction Force (VGRF) readings are preprocessed and transformed using several methods within the proposed framework. Statistical features are extracted from the transformed data, and the Student's t-test test is used to create different feature sets. A simple artificial neural network is trained over these features to detect PD, and its performance is evaluated using different metrics. Classification accuracy of 98.3% and Matthews Correlation Coefficient of 0.959 are obtained, indicating high-performance classification. Based on these performance measures, the proposed NR-LBP algorithm is compared to the regular LBP algorithm and found to be contributing positively to classification performance when various types of transformations are used in combination. (C) 2020 Published by Elsevier Ltd.
机译:帕金森病(PD)是一种影响全世界数百万人的神经变性疾病。基于临床症状的诊断工具已经由科学界大多在过去十年中开发。本研究提出了一种新的PD检测方法,使用人工神经网络和名为邻域表示局部二进制模式(NR-LBP)的新技术框架。垂直地反作用力(VGRF)读数在所提出的框架内使用几种方法进行预处理和转化。从转换数据中提取统计功能,学生的T-Test测试用于创建不同的特征集。在这些功能上培训简单的人工神经网络以检测PD,并且使用不同的指标评估其性能。获得98.3%的分类准确性和马修的相关系数为0.959,表明高性能分类。基于这些性能措施,将所提出的NR-LBP算法与常规的LBP算法进行比较,发现当组合使用各种类型的转换时,发现往现的分类性能。 (c)2020由elestvier有限公司发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号