首页> 外文期刊>Biomedical signal processing and control >Separation of interference surface electromyogram into propagating and non-propagating components
【24h】

Separation of interference surface electromyogram into propagating and non-propagating components

机译:将干涉表面电谱分离成传播和非繁殖组分

获取原文
获取原文并翻译 | 示例

摘要

A new algorithm is introduced to decompose interference surface electromyogram (EMG) recorded by a multi-channel system aligned to muscle fibers into propagating and non-propagating contributions. Muscle fiber conduction velocity (CV) is also estimated, reducing the bias induced by non-propagating components. The algorithm is fast and stable, as it is based on alignment and averaging procedures. Simulated signals (with different fat thickness, SNR, number of channels, epoch duration and force level) are used to test the algorithm. The median cross-correlation of simulated and estimated components were about 98% and 90%, for propagating and non-propagating terms, respectively. CV was estimated better than using a multi-channel maximum likelihood approach applied to double differential data (mean error of 0.08 versus 0.13 m/s), with a greater gain in case of thinner fat layer, low SNR and few channels. Example applications to experimental data are also shown (single motor unit action potential, M-wave and interference EMG).Propagating components reflect the travelling of action potentials along muscle fibers. Preliminary tests show that non-propagating contributions provide selective information on motor units firing statistics. The separation of interference EMG into propagating and non-propagating components opens new perspectives, e.g., in the study of synergies, common drive and myoelectric manifestations of fatigue. (C) 2019 Elsevier Ltd. All rights reserved.
机译:引入了一种新的算法来分解由与肌纤维的多通道系统记录的干涉表面电灰度(EMG)转化为传播和非传播贡献。还估计肌纤维传导速度(CV),降低了非繁殖组分诱导的偏差。算法快速稳定,因为它基于对准和平均程序。模拟信号(具有不同的脂肪厚度,SNR,通道数,跨越时钟持续时间和力水平)用于测试算法。模拟和估计成分的中值互相关分别为传播和非传播术语的约98%和90%。 CV估计比使用应用于双差分数据的多通道最大似然方法更好(平均误差为0.08与0.13 m / s),在较薄的脂肪层,低SNR和少量通道的情况下具有更大的增益。还示出了实验数据的示例应用(单电机单元动作电位,M波和干扰EMG)。推销组件反映沿肌纤维的动作电位行驶。初步测试表明,非传播贡献提供了有关电机单元触发统计信息的选择性信息。干扰EMG分离在传播和非繁殖组件中,例如,在研究协同作用,共同驱动和抗疲劳的磁力表现方面,开启了新的视角。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号