首页> 外文期刊>Biomedical signal processing and control >Alcohol use disorder detection using EEG Signal features and flexible analytical wavelet transform
【24h】

Alcohol use disorder detection using EEG Signal features and flexible analytical wavelet transform

机译:使用EEG信号特征和柔性分析小波变换的酒精使用障碍检测

获取原文
获取原文并翻译 | 示例

摘要

The frequent excessive drinking of alcohol severely affects the neuronal composition and working of the brain and consequently developed Alcohol Use Disorder (AUD). Subjects suffering from AUD are prone to various diseases, psychological and cognitive issues if not identified and treated timely. Electroencephalogram (EEG) signals are used to record the internal structure and activity of the brain. The manual screening of EEG signals for AUD detection is complicated for practitioners because EEG signals are recorded in microvolts (mu v) and consists of the inherent internal complexity of the brain. Therefore, an automated computer-aided diagnosis (CAD) is used for assisting the medical practitioner in AUD screening process. The recorded EEG signals of a subject are nonlinear and oscillatory, and CAD methods examine these signals in their frequency sub-bands. In this paper, flexible analytical wavelets transform (FAWT) based machine learning models are proposed for automated alcoholism detection. In the proposed methodology, EEG signals are decomposed into approximate and detailed wavelet coefficients using FAWT. The statistical features such as mean, standard deviation, kurtosis, skewness, and Shannon entropy are extracted from the selected wavelet coefficients. The features are fed to the various machine learning models including Least Square-Support Vector Machine (LS-SVM), Support Vector Machine (SVM) and Naive Bayes learners for training. The training and testing are performed using 10-fold cross-validation. The performance of models is evaluated using all essential measures such as accuracy, sensitivity, specificity, F-measure, precision, Matthews correlation coefficient (MCC) and ROC. The results suggest that LS-SVM using polynomial kernel performed best with accuracy 99.17%, Sensitivity 99.17%, and Specificity as 99.44% using 10-fold cross-validation technique. (C) 2018 Elsevier Ltd. All rights reserved.
机译:频繁的过度饮用酒精严重影响了神经元成分和大脑的工作,从而产生了饮酒障碍(AUD)。如果没有确定和治疗,患有患病的受试者患有各种疾病,心理和认知问题。脑电图(EEG)信号用于记录大脑的内部结构和活动。对于从业者对AUG检测的MEG信号的手动筛选是复杂的,因为EEG信号被记录在微伏(MU V)中,并且由大脑的固有内部复杂度组成。因此,用于自动化计算机辅助诊断(CAD)用于协助医生在AUD筛查过程中。受试者的记录的EEG信号是非线性和振荡的,并且CAD方法在其频率子带中检查这些信号。本文提出了基于柔性分析小波变换(FAWT)的机器学习模型,用于自动酗酒检测。在所提出的方法中,EEG信号用FAWT分解成近似和详细的小波系数。从所选小波系数中提取统计特征,例如平均值,标准偏差,峰,偏斜,偏移和香农熵。该特征被馈送到各种机器学习模型,包括最小二乘支持向量机(LS-SVM),支持向量机(SVM)和Naive Bayes学习者进行培训。使用10倍交叉验证进行培训和测试。使用所有基本措施(例如精度,灵敏度,特异性,F测量,精度,Matthews相关系数(MCC)和ROC)等所有基本措施来评估模型的性能。结果表明,使用多项式核的LS-SVM使用10倍交叉验证技术,使用多项式核,精度为99.17%,灵敏度99.17%和特异性为99.44%。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号