首页> 外文期刊>Biomedical signal processing and control >Robust feature sets for contraction level invariant control of upper limb myoelectric prosthesis
【24h】

Robust feature sets for contraction level invariant control of upper limb myoelectric prosthesis

机译:用于上肢肌电假体收缩水平不变控制的鲁棒特征集

获取原文
获取原文并翻译 | 示例

摘要

In spite of the tremendous progress of upper limb myoelectric prosthetic control in the field of rehabilitation engineering, there still exist several real world challenges to be met, before realizing it as a good substitute for a natural arm. Incompetence of the system to accommodate variations in contraction levels of muscle movements has been identified as one of the significant challenges, as these variations have a subsequent impact on the performance of pattern recognition based myoelectric control. Non-linear techniques are more suited to characterize myoelectric signals since one of their major properties is non-linearity. Based on this we propose two feature combinations which can lead to a reliable control scheme that is robust against contraction level variations. The performance of our proposed features when tested on nine transradial amputees for six motion classes at three different force levels outweighed other established feature extraction methods meant for contraction variation independent control. Significant improvement of around 8% in average classification performance was achieved across all subjects and force levels, subjected to training, both with all force levels and with unseen force levels. Moreover, these features achieved superior performance in classifying flexion as well as grip movements. (C) 2019 Elsevier Ltd. All rights reserved.
机译:尽管上肢肌电假体控制在康复工程领域取得了巨大进步,但在将其实现为自然手臂的良好替代之前,仍然存在一些现实世界中的挑战。系统的能力不足以适应肌肉运动收缩水平的变化已被确定为重大挑战之一,因为这些变化会对基于模式识别的肌电控制的性能产生后续影响。非线性技术更适合表征肌电信号,因为其主要特性之一是非线性。基于此,我们提出了两个特征组合,它们可以导致可靠的控制方案,该方案对收缩水平的变化具有鲁棒性。在三个不同的力水平下,在九个经radi骨截肢者的六个运动类别上进行测试时,我们提出的功能的性能超过了其他用于收缩变化独立控制的既定功能提取方法。在所有受测水平和未受测受力水平下,受训的所有受试者和受力水平的平均分类性能均实现了约8%的显着提高。此外,这些功能在对屈曲和握力运动进行分类时获得了卓越的性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号