首页> 外文期刊>Biomedical signal processing and control >Robust remote heart rate estimation from multiple asynchronous noisy channels using autoregressive model with Kalman filter
【24h】

Robust remote heart rate estimation from multiple asynchronous noisy channels using autoregressive model with Kalman filter

机译:使用卡尔曼滤波器的自回归模型从多个异步噪声通道进行可靠的远程心率估计

获取原文
获取原文并翻译 | 示例

摘要

Remote heart rate measurement has many powerful applications, such as measuring stress in the workplace, and the analysis of the impact of cognitive tasks on breathing and heart rate variability (HRV). Although many methods are available to measure heart rate remotely from face videos, most of them only work well on stationary subjects under well-controlled conditions, and their performance significantly degrades under subject's motions and illumination variation. We propose a novel algorithm to estimate heart rate. Also, it can differentiate between a photo of a human face and an actual human face meaning that it can detect false signals and skip them. The method obtains ROls using facial landmarks, then it rectifies illumination based on Normalized Least Mean Square (NLMS) adaptive filter and eliminates non-rigid motions based on standard deviation of fixed length of the signal's segments. The method employs the RADICAL technique to extract independent subcomponents. The heart rate measures for each subcomponent, are estimated by analysis of frequency signal to find the one with the highest magnitude. A two-steps data fusion method is also introduced to combine current and previous measured heart rates to calculate a more accurate result. In this paper, we explore the potential of our algorithm on two self-collected, and DEAP databases. The results of three experiments demonstrate that our algorithm substantially outperforms all previous methods. Moreover, we investigate the behavior of our algorithm under challenging conditions including the subject's motions and illumination variation, which shows that our algorithm can reduce the influences of illumination interference and rigid motions significantly. Also, it indicates that our algorithm can be used for the online environment. Finally, the application of our algorithm in search and rescue scenarios using drones is considered and an experiment is conducted to investigate the algorithm's potential to be embedded in drones. (C) 2018 Elsevier Ltd. All rights reserved.
机译:远程心率测量具有许多强大的应用程序,例如测量工作场所中的压力以及分析认知任务对呼吸和心率变异性(HRV)的影响。尽管有很多方法可以从面部视频远程测量心率,但大多数方法仅在控制良好的条件下对静止的对象有效,并且在对象的运动和光照变化下它们的性能会大大降低。我们提出了一种新的算法来估计心率。同样,它可以区分人脸照片和实际人脸照片,这意味着它可以检测到虚假信号并跳过它们。该方法使用面部界标获取ROls,然后基于归一化最小均方(NLMS)自适应滤波器对照明进行校正,并基于信号段固定长度的标准偏差消除非刚性运动。该方法采用RADICAL技术提取独立的子组件。通过对频率信号的分析来估计每个子组件的心率测量值,以找到幅度最大的一个。还引入了两步数据融合方法,以结合当前和先前测得的心率来计算更准确的结果。在本文中,我们探索了在两个自收集的DEAP数据库中该算法的潜力。三个实验的结果表明,我们的算法大大优于所有以前的方法。此外,我们研究了算法在挑战性条件下的行为,包括被摄对象的运动和光照变化,这表明我们的算法可以显着减少光照干扰和刚性运动的影响。另外,它表明我们的算法可用于在线环境。最后,考虑了我们的算法在无人机搜索和救援场景中的应用,并进行了实验研究该算法嵌入无人机的潜力。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号