首页> 外文期刊>Biomedical signal processing and control >An iterative speckle filtering algorithm for ultrasound images based on bayesian nonlocal means filter model
【24h】

An iterative speckle filtering algorithm for ultrasound images based on bayesian nonlocal means filter model

机译:基于贝叶斯非局部均值滤波模型的超声图像迭代斑点滤波算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of suppressing speckle noise in ultrasound images for better clinical diagnosis and subsequent image processes. In order to employ Bayesian nonlocal means filter (BNLMF) model in the circumstance of speckle noise to realize image restoration, we deduce the key probability density function with the help of speckle noise statistical characteristic and then present an iterative filtering algorithm. The first iteration with the noisy image itself being the input of the filtering model generates an initial estimator of the clean image which then further offers a better input of the filtering model. The constantly updated neighbor patches and probability density functions make the filtering result closer to the potential clean one. The healthy iteration process exports the favorable restored image surpassing the results obtained by some typical despeckling methods. Besides, benefit from the blockwise filtering style, pre-patch-selection operation and a small iteration number, the whole algorithm won't consume much time. Various experiments designed for processing the simulated noisy images and the real ultrasound images prove the superiority of the proposed method. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在本文中,我们研究了抑制超声图像中斑点噪声的问题,以便更好地进行临床诊断和后续图像处理。为了在斑点噪声的情况下采用贝叶斯非局部均值滤波(BNLMF)模型来实现图像的复原,我们借助斑点噪声统计特性推导了关键概率密度函数,并提出了迭代滤波算法。带有噪声图像本身作为过滤模型输入的第一次迭代会生成一个干净图像的初始估计量,然后进一步为过滤模型提供更好的输入。不断更新的邻居补丁和概率密度函数使滤波结果更接近潜在的干净补丁。健康的迭代过程会输出良好的还原图像,其效果优于通过某些典型的去斑点方法获得的结果。此外,得益于逐块过滤样式,预补丁选择操作和较小的迭代次数,整个算法不会花费很多时间。设计用于处理模拟噪声图像和实际超声图像的各种实验证明了该方法的优越性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号