首页> 外文期刊>Biomedical signal processing and control >Machine learning assessment of visually induced motion sickness levels based on multiple biosignals
【24h】

Machine learning assessment of visually induced motion sickness levels based on multiple biosignals

机译:基于多种生物信号的视觉诱发运动病水平的机器学习评估

获取原文
获取原文并翻译 | 示例

摘要

Most of the existing assessments of Motion Sickness (MS), a condition caused by sensory conflicts, focus on the generation of the binary classification. However, those works are the single subject based classification results with just passable effects. In this study, 20 subjects were visually stimulated to induce motion sickness, and their subjective evaluations (mild, moderate, and severe feelings of MS) were recorded, as well as the EEG, the center of pressure(COP), and the head and waist motion trajectories, followed by extraction of features. The voting classifier utilized four types of base classifiers: 1) K-Nearest Neighbor Classifier (KNN), 2) Logistic Regression (LR), 3) Random Forest (RF) and 4) Multilayer perceptron neural network (MLPNN). The averaged accuracy and kappa of the voting classifier were 0.911 and 0.80 across 20 subjects. The multiple subjects binary classification yielded an accuracy of 0.763 and an kappa of 0.52. Multiple subjects three-levels classification refers to the classification of the degree of discomfort associated with motion sickness, with sensitivity values of 0.791/0.504/0.867 and kappa of 0.51, respectively. It is able to detect the Motion Sickness Level (MSL) without interrupting the subjects, which has certain application prospects. For the future use, it can detect the user experience over different VR devices, or the adaptive training process of relevant occupations such as drivers, pilots or astronauts. (C) 2018 Elsevier Ltd. All rights reserved.
机译:现有的大多数运动病(MS)评估都是由二元分类产生的,运动病是一种由感觉冲突引起的疾病。但是,这些作品是基于单个主题的分类结果,效果尚可。在这项研究中,视觉刺激了20位受试者诱发晕动病,并记录了他们的主观评估(轻度,中度和重度MS感觉)以及EEG,压力中心(COP)以及头部和头部腰部运动轨迹,然后提取特征。投票分类器使用了四种类型的基本分类器:1)K最近邻分类器(KNN),2)Logistic回归(LR),3)随机森林(RF)和4)多层感知器神经网络(MLPNN)。 20个主题的投票分类器的平均准确度和kappa为0.911和0.80。多个主题的二元分类得出的准确度为0.763,kappa为0.52。多主体三级分类是指与晕车有关的不适程度的分类,敏感度分别为0.791 / 0.504 / 0.867和kappa为0.51。它能够检测运动晕水平(MSL)而不会干扰受试者,这具有一定的应用前景。为了将来使用,它可以检测不同VR设备上的用户体验,或者检测相关职业(如驾驶员,飞行员或宇航员)的自适应培训过程。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Biomedical signal processing and control》 |2019年第3期|202-211|共10页
  • 作者

    Li Yan; Liu Aie; Ding Li;

  • 作者单位

    Beihang Univ, Sch Biol Sci & Med Engn, Xueyuan Rd 37, Beijing 100191, Peoples R China|Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 102402, Peoples R China;

    Beihang Univ, Sch Biol Sci & Med Engn, Xueyuan Rd 37, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Biol Sci & Med Engn, Xueyuan Rd 37, Beijing 100191, Peoples R China|Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 102402, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Motion sickness level; Voting; Classifier; EEG; Information fusion;

    机译:晕车等级;投票;分类器;EEG;信息融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号