首页> 外文期刊>Biomedical signal processing and control >Correction of inhomogeneous magnetic resonance images using multiscale retinex for segmentation accuracy improvement
【24h】

Correction of inhomogeneous magnetic resonance images using multiscale retinex for segmentation accuracy improvement

机译:使用多尺度retinex校正不均匀磁共振图像以提高分割精度

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study was to improve the accuracy of tissue segmentation on brain magnetic resonance (MR) images preprocessed by multiscale retinex (MSR), segmented with a combined boosted decision tree (BDT) and MSR algorithm (hereinafter referred to as the MSRBDT algorithm). Simulated brain MR (SBMR) T1-weighted images of different noise levels and RF inhomogeneities were adopted to evaluate the outcome of the proposed method; the MSRBDT algorithm was used to identify the gray matter (GM), white matter (WM), and cerebral-spinal fluid (CSF) in the brain tissues. The accuracy rates of GM, WM, and CSF segmentation, with spatial features (G.x.y, r,θ), were respectively greater than 0.9805, 0.9817, and 0.9871. In addition, images segmented with the MSRBDT algorithm were better than those obtained with the expectation maximization (EM) algorithm; brain tissue segmentation in MR images was significantly more precise. The proposed MSRBDT algorithm could be beneficial in clinical image segmentation.
机译:这项研究的目的是提高通过多尺度retinex(MSR)预处理,结合组合的增强决策树(BDT)和MSR算法(以下简称MSRBDT算法)对脑磁共振(MR)图像进行组织分割的准确性)。采用不同噪声水平和RF不均匀性的模拟脑MR(SBMR)T1加权图像来评估该方法的结果; MSRBDT算法用于识别脑组织中的灰质(GM),白质(WM)和脑脊髓液(CSF)。具有空间特征(G.x.y,r,θ)的GM,WM和CSF分割的准确率分别大于0.9805、0.9817和0.9871。另外,用MSRBDT算法分割的图像要比用期望最大化(EM)算法获得的图像要好。 MR图像中的脑组织分割明显更精确。提出的MSRBDT算法可能对临床图像分割有益。

著录项

  • 来源
    《Biomedical signal processing and control》 |2012年第2期|p.129-140|共12页
  • 作者单位

    Department ofBiomedkal Engineering, Yuanpei University, No. 306, Yuanpei St., Hsinchu 300, Taiwan, ROC;

    Department of Electrical Engineering, National Chiao-Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu 300, Taiwan, ROC;

    Research Imaging Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3900, USA;

    Department of Biomedkal Engineering, School of Biomedkal Science and Engineering, National Yang-Ming University, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan, ROC;

    Institute of Biomedkal Engineering, College of Medicine, National Taiwan University, No. 1, Sec. l,Jen-Ai Rd., Taipei 100, Taiwan, ROC;

    Institute of Biomedkal Engineering, College of Medicine, National Taiwan University, No. 1, Sec. l,Jen-Ai Rd., Taipei 100, Taiwan, ROC,Department of Neurology, Tzu Chi General Hospital, Tzu Chi University, No. 707, Sec. 3, Chung Yang Rd., Hualien 970, Taiwan, ROC;

    Department of Psychology, University of Virginia, 102 Gilmer Hall, PO Box 400400, Charlottesville, VA 22904-4400, USA;

    Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA;

    Institute of Biomedkal Engineering, College of Medicine, National Taiwan University, No. 1, Sec. l,Jen-Ai Rd., Taipei 100, Taiwan, ROC;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    segmentation; boosted decision tree; multiscale retinex; spatial feature; brain tissue;

    机译:分割;提升决策树;多尺度retinex;空间特征脑组织;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号