首页> 外文期刊>Biomedical signal processing and control >Classification of ictal and seizure-free EEG signals using fractional linear prediction
【24h】

Classification of ictal and seizure-free EEG signals using fractional linear prediction

机译:使用分数线性预测对发作性和无发作性脑电信号进行分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new method for electroencephalogram (EEG) signal classification based on fractional-order calculus. The method, termed fractional linear prediction (FLP), is used to model ictal and seizure-free EEG signals. It is found that the modeling error energy is substantially higher for ictal EEG signals compared to seizure-free EEG signals. Moreover, it is known that ictal EEG signals have higher energy than seizure-free EEG signals. These two parameters are then given as inputs to train a support vector machine (SVM). The trained SVM is then used to classify a set of EEG signals into ictal and seizure-free categories. It is found that the proposed method gives a classification accuracy of 95.33% when the SVM is trained with the radial basis function (RBF) kernel.
机译:在本文中,我们提出了一种基于分数阶微积分的脑电图(EEG)信号分类的新方法。称为分数线性预测(FLP)的方法用于对发作期和无发作的EEG信号进行建模。已发现,与无癫痫的EEG信号相比,极短的EEG信号的建模误差能量要高得多。而且,众所周知的是,发作性EEG信号比无癫痫发作的EEG信号具有更高的能量。然后,将这两个参数作为输入来训练支持向量机(SVM)。然后,将训练有素的SVM用于将一组EEG信号分类为短波和无癫痫发作类别。结果表明,采用径向基函数(RBF)核训练SVM时,该方法的分类精度为95.33%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号