首页> 外文期刊>Biomedical signal processing and control >A comparison of upper-limb motion pattern recognition using EMG signals during dynamic and isometric muscle contractions
【24h】

A comparison of upper-limb motion pattern recognition using EMG signals during dynamic and isometric muscle contractions

机译:在动态和等距肌肉收缩期间使用EMG信号进行上肢运动模式识别的比较

获取原文
获取原文并翻译 | 示例

摘要

Multichannel electromyography (EMG) signals are one of the common methods used in human motion pattern recognition. In exoskeleton robot control, EMG signals are measured during dynamic or isometric muscle contractions. Various types of contraction can cause EMG signals to vary, affecting recognition performance. A motion pattern recognition model using EMG signals from either dynamic or isometric muscle contractions has not yet been fully investigated. In this study, a novel feature extraction method, using the short-time Fourier transform ranking (STFT-ranking) feature, was employed to determine multichannel EMG signals. The performance of the novel feature and conventional features for motion pattern recognition using EMG signals, which included time-domain and frequency-domain features, was compared during dynamic and isometric muscle contractions. Experiments were conducted using an exoskeleton robotic arm to aid users in generating EMG signals of designated motion patterns. Among the features tested, the STFT-ranking feature yielded an accuracy rate exceeding 90% when the EMG signals used in the training and validation feature data sets were of the same type of muscle contraction. After examining the STFT-ranking feature projected onto the PCA space, the STFT-ranking feature was determined to offer more satisfactory performance than the other features tested for motion pattern recognition, because the feature data it collected from various motion patterns were more separable. The experimental results also revealed that it is preferable that EMG signals from the same type of muscle contraction, whether dynamic or isometric, are consistently used in both the training and validation (control) phases. Inconsistent EMG signals in the training and validation phases yielded a negative effect on motion pattern recognition performance. The methodology developed in this study has potential applications in exoskeleton robot control and rehabilitation.
机译:多通道肌电图(EMG)信号是人类运动模式识别中常用的方法之一。在外骨骼机器人控制中,在动态或等距肌肉收缩期间测量EMG信号。各种类型的收缩都会导致EMG信号发生变化,从而影响识别性能。使用来自动态或等距肌肉收缩的EMG信号的运动模式识别模型尚未得到充分研究。在这项研究中,一种新颖的特征提取方法,利用短时傅立叶变换排序(STFT排序)功能,被用来确定多通道EMG信号。在动态和等距肌肉收缩过程中,比较了使用EMG信号进行运动模式识别的新颖特征和常规特征的性能,包括时域和频域特征。使用外骨骼机械臂进行实验,以帮助用户生成指定运动模式的EMG信号。在测试的特征中,当训练和验证特征数据集中使用的EMG信号具有相同类型的肌肉收缩时,STFT排序特征产生的准确率超过90%。在检查了投影到PCA空间上的STFT等级特征后,确定STFT等级特征比测试运动图案识别的其他特征提供更令人满意的性能,因为从各种运动图案中收集的特征数据更可分离。实验结果还表明,最好在训练和验证(对照)阶段始终使用来自相同类型肌肉收缩的EMG信号(无论是动态的还是等距的)。在训练和验证阶段不一致的EMG信号对运动模式识别性能产生负面影响。在这项研究中开发的方法在外骨骼机器人的控制和康复中具有潜在的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号