首页> 外文期刊>Biomedical signal processing and control >Improved pattern recognition classification accuracy for surface myoelectric signals using spectral enhancement
【24h】

Improved pattern recognition classification accuracy for surface myoelectric signals using spectral enhancement

机译:使用光谱增强功能提高表面肌电信号的模式识别分类精度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we demonstrate that spectral enhancement techniques can be configured to improve the classification accuracy of a pattern recognition-based myoelectric control system. This is based on the observation that, when the subject is at rest, the power in EMG recordings drops to levels characteristic of the noise. Two Minimum Statistics techniques, which were developed for speech processing, are compared against electromyographic (EMG) de-noising methods such as wavelets and Empirical Mode Decomposition. In the cases of simulated EMG signals contaminated with white noise and for real EMG signals with added and intrinsic noise the gesture classification accuracy was shown to increase. The mean improvement in the classification accuracy is greatest when Improved Minima-Controlled Recursive Averaging (IMCRA)-based spectral enhancement is applied, thus demonstrating the potential of spectral enhancement techniques for improving the performance of pattern recognition-based myoelectric control. (C) 2014 Elsevier Ltd. All rights reserved.
机译:在本文中,我们证明了可以配置频谱增强技术来提高基于模式识别的肌电控制系统的分类精度。这是基于以下观察结果:当对象静止时,EMG记录中的功率会下降到噪声的特征水平。将两种用于语音处理的最低统计技术与肌电(EMG)降噪方法(例如小波和经验模态分解)进行了比较。在模拟的EMG信号被白噪声污染的情况下,对于带有附加噪声和固有噪声的真实EMG信号,手势分类的准确性会提高。当应用基于改进的最小控制递归平均(IMCRA)的频谱增强时,分类准确性的平均提高最大,因此证明了频谱增强技术在改善基于模式识别的肌电控制性能方面的潜力。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号