首页> 外文期刊>Biomedical signal processing and control >Accurate inverse-consistent symmetric optical flow for 4D CT lung registration
【24h】

Accurate inverse-consistent symmetric optical flow for 4D CT lung registration

机译:4D CT肺对位的准确逆一致对称光流

获取原文
获取原文并翻译 | 示例

摘要

Deformable image registration remains a challenging research area due to difficulties associated with local intensity variation and large motion. In this paper, an Accurate Inverse-consistent Symmetric Optical Flow (AISOF) method is proposed to overcome these difficulties. The two main contributions of AISOF include the following: (1) a coarse-to-fine strategy for an inverse-consistent symmetric method and (2) a novel Hybrid Local Binary Pattern (HLBP) to the classical Lucas-Kanade optical flow method. The HLBP consists of a median binary pattern and a generalised centre-symmetric local binary pattern. The generalised centre-symmetric local binary pattern has two thresholds, and this pattern can capture more information than the classical centre-symmetric local binary pattern, which has one threshold. The proposed HLBP can cope well with high contrast intensity and local intensity variation. Because the inverse-consistent symmetric method can reduce inverse consistency errors in Markov random fields based registration methods, we adopted this method to improve the accuracy of registration. In addition, a coarse-to-fine strategy was adopted to handle large motion. The proposed AISOF method was evaluated for 10 publicly available 4D CT lung datasets from the DIR-Lab. The mean target registration error of the AISOF method is 1.16 mm, which is significantly superior to the error of the classical Lucas-Kanade optical flow method, 2.83 mm. Moreover, this error is also the smallest of all unmasked registration methods using these datasets. (C) 2015 Elsevier Ltd. All rights reserved.
机译:由于与局部强度变化和大运动有关的困难,可变形的图像配准仍然是具有挑战性的研究领域。为了克服这些困难,本文提出了一种精确的逆一致对称光流(AISOF)方法。 AISOF的两个主要贡献包括:(1)逆一致对称方法的从粗到精策略,以及(2)经典Lucas-Kanade光流方法的新颖混合局部二值模式(HLBP)。 HLBP由中值二进制模式和广义中心对称局部二进制模式组成。广义中心对称局部二进制模式具有两个阈值,并且该模式比经典的中心对称局部二进制模式具有一个阈值可以捕获更多信息。所提出的HLBP可以很好地应对高对比度强度和局部强度变化。由于逆一致对称方法可以减少基于马尔可夫随机场的配准方法中的逆一致性误差,因此我们采用这种方法来提高配准的准确性。另外,采用了从粗到精的策略来处理大运动。对DIR-Lab的10个公开可用的4D CT肺数据集评估了拟议的AISOF方法。 AISOF方法的平均目标配准误差为1.16 mm,大大优于经典的Lucas-Kanade光流方法的误差2.83 mm。此外,此错误也是使用这些数据集的所有未屏蔽注册方法中最小的。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号