首页> 外文期刊>Biomedical signal processing and control >Towards automated electroencephalography-based Alzheimer's disease diagnosis using portable low-density devices
【24h】

Towards automated electroencephalography-based Alzheimer's disease diagnosis using portable low-density devices

机译:使用便携式低密度设备进行基于脑电图的阿尔茨海默氏病自动诊断

获取原文
获取原文并翻译 | 示例

摘要

Today, Alzheimer's disease (AD) diagnosis is carried out using subjective mental status examinations assisted in research by scarce and expensive neuroimaging scans and invasive laboratory tests; all of which render the diagnosis time-consuming, geographically confined and costly. Driven by these limitations, quantitative analysis of electroencephalography (EEG) has been proposed as a non-invasive and more convenient technique to study AD. Published works on EEG-based AD diagnosis typically share two main characteristics: EEG is manually selected by experienced clinicians to discard artefacts that affect AD diagnosis, and reliance on EEG devices with 20 or more electrodes. Recent work, however, has suggested promising results by using automated artefact removal (AAR) algorithms combined with medium-density EEG setups. Over the last couple of years, however, low-density, portable EEG devices have emerged, thus opening the doors for low-cost AD diagnosis in low-income countries and remote regions, such as the Canadian Arctic. Unfortunately, the performance of automated diagnostic solutions based on low-density portable devices is still unknown. The work presented here aims to fill this gap. We propose an automated EEG-based AD diagnosis system based on AAR and a low-density (7- channel) EEG setup. EEG data was acquired during resting-awake protocol from control and AD participants. After AAR, common EEG features, spectral power and coherence, are computed along with the recently proposed amplitude-modulation features. The obtained features are used for training and testing of the proposed diagnosis system. We report and discuss the results obtained with such system and compare the obtained performance with results published in the literature using higher-density EEG layouts. (C) 2016 Elsevier Ltd. All rights reserved.
机译:如今,阿尔茨海默氏病(AD)的诊断是通过主观的心理状态检查来进行的,该检查通过缺乏价值的昂贵的神经影像扫描和有创实验室检查辅助研究。所有这些都使诊断变得费时,受地域限制且成本高昂。在这些局限性的驱动下,脑电图定量分析(EEG)已被提议作为一种非侵入性且更方便的技术来研究AD。已发表的有关基于EEG的AD诊断的著作通常具有两个主要特征:有经验的临床医生手动选择EEG,以丢弃影响AD诊断的伪像,并依赖具有20个或更多电极的EEG设备。但是,最近的工作表明,通过结合使用人工伪像去除(AAR)算法和中等密度EEG设置,可以得到令人鼓舞的结果。然而,在过去的几年中,低密度的便携式EEG设备应运而生,从而为低收入国家和偏远地区(如加拿大北极地区)的低成本AD诊断打开了大门。不幸的是,基于低密度便携式设备的自动诊断解决方案的性能仍然未知。本文介绍的工作旨在填补这一空白。我们提出一种基于AAR和低密度(7通道)EEG设置的基于EEG的自动化AD诊断系统。在静息清醒方案中,从对照和AD参与者中获取EEG数据。在AAR之后,将计算出共同的EEG特征,频谱功率和相干性以及最近提出的幅度调制特征。获得的特征用于训练和测试提出的诊断系统。我们报告和讨论使用该系统获得的结果,并将获得的性能与文献中使用较高密度EEG布局发布的结果进行比较。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号