首页> 外文期刊>Biomedical signal processing and control >Gray level co-occurrence matrix and random forest based acute lymphoblastic leukemia detection
【24h】

Gray level co-occurrence matrix and random forest based acute lymphoblastic leukemia detection

机译:灰度共现矩阵和基于随机森林的急性淋巴细胞白血病检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we have proposed an acute lymphoblastic leukemia detection strategy from the microscopic images. The scheme utilizes all the steps associated with any other classification scheme, but our contribution lies on a marker-based segmentation(MBS), gray level co-occurrence matrix (GLCM) based feature extraction, and probabilistic principal component analysis(PPCA) based feature reduction. The relevant features are used in a random forest (RF) based classifier. Extensive experiments are carried out on the ALL-IDB1 dataset, and comparative analysis has been made with other existing schemes with respect to sensitivity, specificity, and classification accuracy. The proposed scheme (MBS+GLCM+PPCA+RF) achieves 96.29% segmentation accuracy and classification accuracy of 99.004% and 96% for nucleus and cytoplasm respectively. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在本文中,我们从显微图像中提出了一种急性淋巴细胞白血病的检测策略。该方案利用了与其他任何分类方案相关的所有步骤,但我们的贡献在于基于标记的细分(MBS),基于灰度共生矩阵(GLCM)的特征提取和基于概率主成分分析(PPCA)的特征减少。相关功能用于基于随机森林(RF)的分类器中。在ALL-IDB1数据集上进行了广泛的实验,并与其他现有方案进行了敏感性,特异性和分类准确性方面的比较分析。提出的方案(MBS + GLCM + PPCA + RF)分别实现了96.29%的分割准确度和99.004%的分类准确度以及96%的细胞质分类准确度。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号