...
首页> 外文期刊>Biomedical Microdevices >Modeling and Optimal Design of High-Sensitivity Piezoresistive Microcantilevers Within Flow Channels for Biosensing Applications
【24h】

Modeling and Optimal Design of High-Sensitivity Piezoresistive Microcantilevers Within Flow Channels for Biosensing Applications

机译:用于生物传感应用的流道内高灵敏度压阻微悬臂梁的建模和优化设计

获取原文
获取原文并翻译 | 示例

摘要

The mechanical design and optimization of piezoresistive cantilevers for biosensing applications is studied via finite element analysis. Models are described for predicting the static behavior of cantilevers with elastic and piezoresistive layers for analyte-receptor binding. The high-sensitivity cantilevers can be used to detect changes in surface stress due to binding and hybridization of biomolecules. The silicon-based cantilevers have thicknesses typically on the order of a few microns and are doped to introduce their piezoresistive characteristics. Parametric modeling based on the finite element method is used to help determine the optimum parameters of cantilever design. Chemo-mechanical binding forces have been analyzed to understand issues of saturation over the cantilever surface. Furthermore, the introduction of stress concentration regions during cantilever fabrication has been discussed which greatly enhances the detection sensitivity through increased surface stress. The spring constant and the resonance frequency change are also analyzed.
机译:通过有限元分析,研究了用于生物传感应用的压阻悬臂的机械设计和优化。描述了用于预测具有弹性层和压阻层的悬臂的静态行为的模型,用于分析物与受体的结合。高灵敏度悬臂可用于检测由于生物分子的结合和杂交而引起的表面应力变化。硅基悬臂的厚度通常约为几微米,并被掺杂以引入其压阻特性。基于有限元方法的参数化建模可帮助确定悬臂设计的最佳参数。分析了化学机械结合力以了解悬臂表面的饱和问题。此外,已经讨论了在悬臂制造过程中应力集中区域的引入,这通过增加表面应力来大大提高检测灵敏度。还分析了弹簧常数和共振频率变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号