首页> 外文期刊>IEEE Transactions on Biomedical Engineering >A Spiking Neural Network Methodology and System for Learning and Comparative Analysis of EEG Data From Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects
【24h】

A Spiking Neural Network Methodology and System for Learning and Comparative Analysis of EEG Data From Healthy Versus Addiction Treated Versus Addiction Not Treated Subjects

机译:用于学习和比较健康成瘾者与未治疗成瘾者的脑电数据的尖峰神经网络方法和系统

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a method utilizing spiking neural networks (SNN) for learning, classification, and comparative analysis of brain data. As a case study, the method was applied to electroencephalography (EEG) data collected during a GO/NOGO cognitive task performed by untreated opiate addicts, those undergoing methadone maintenance treatment (MMT) for opiate dependence and a healthy control group. Methods: the method is based on an SNN architecture called NeuCube, trained on spatiotemporal EEG data. Objective: NeuCube was used to classify EEG data across subject groups and across GO versus NOGO trials, but also facilitated a deeper comparative analysis of the dynamic brain processes. Results: This analysis results in a better understanding of human brain functioning across subject groups when performing a cognitive task. In terms of the EEG data classification, a NeuCube model obtained better results (the maximum obtained accuracy: 90.91%) when compared with traditional statistical and artificial intelligence methods (the maximum obtained accuracy: 50.55%). Significance: more importantly, new information about the effects of MMT on cognitive brain functions is revealed through the analysis of the SNN model connectivity and its dynamics. Conclusion: this paper presented a new method for EEG data modeling and revealed new knowledge on brain functions associated with mental activity which is different from the brain activity observed in a resting state of the same subjects.
机译:本文介绍了一种利用尖峰神经网络(SNN)进行大脑数据的学习,分类和比较分析的方法。作为案例研究,该方法适用于在GO / NOGO认知任务中收集的脑电图(EEG)数据,这些任务由未经治疗的阿片成瘾者,接受美沙酮维持治疗(MMT)的阿片依赖者和健康对照组完成。方法:该方法基于称为NeuCube的SNN架构,并接受时空EEG数据训练。目的:NeuCube被用于对受试者组以及GO与NOGO试验之间的脑电数据进行分类,但也有助于对动态大脑过程进行更深入的比较分析。结果:通过此分析,可以更好地了解执行认知任务时各个组的人脑功能。在EEG数据分类方面,与传统的统计和人工智能方法(最大获得的准确度:50.55%)相比,NeuCube模型获得了更好的结果(最大获得的准确度:90.91%)。启示:更重要的是,通过分析SNN模型的连通性及其动力学,揭示了有关MMT对认知脑功能影响的新信息。结论:本文提出了一种新的脑电数据建模方法,并揭示了与精神活动有关的脑功能的新知识,这与在相同受试者的静止状态下观察到的脑活动不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号