首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >An Automatic Tool for Quantification of Nerve Fibers in Corneal Confocal Microscopy Images
【24h】

An Automatic Tool for Quantification of Nerve Fibers in Corneal Confocal Microscopy Images

机译:定量角膜共聚焦显微镜图像中神经纤维的自动工具

获取原文
获取原文并翻译 | 示例

摘要

We describe and evaluate an automated software tool for nerve-fiber detection and quantification in corneal confocal microscopy (CCM) images, combining sensitive nerve-fiber detection with morphological descriptors. Method: We have evaluated the tool for quantification of Diabetic Sensorimotor Polyneuropathy (DSPN) using both new and previously published morphological features. The evaluation used 888 images from 176 subjects (84 controls and 92 patients with type 1 diabetes). The patient group was further subdivided into those with (n = 63) and without (n = 29) DSPN. Results: We achieve improved nervefiber detection over previous results (91.7% sensitivity and specificity in identifying nerve-fiber pixels). Automatic quantification of nerve morphology shows a high correlation with previously reported, manually measured, features. Receiver Operating Characteristic (ROC) analysis of both manual and automatic measurement regimes resulted in similar results in distinguishing patients with DSPN from those without: AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point. Conclusion: Automated quantification of corneal nerves in CCM images provides a sensitive tool for identification of DSPN. Its performance is equivalent to manual quantification, while improving speed and repeatability. Significance: CCM is a novel in vivo imaging modality that has the potential to be a noninvasive and objective image biomarker for peripheral neuropathy. Automatic quantification of nerve morphology is a major step forward in the early diagnosis and assessment of progression, and, in particular, for use in clinical trials to establish therapeutic benefit in diabetic and other peripheral neuropathies.
机译:我们描述并评估了一种自动化的软件工具,用于将神经纤维检测和定量在角膜共聚焦显微镜(CCM)图像中进行组合,并将敏感的神经纤维检测与形态学描述符相结合。方法:我们评估了使用新的和先前发表的形态学特征量化糖尿病感觉运动性多发性神经病(DSPN)的工具。该评估使用了176位受试者(84位对照者和92位1型糖尿病患者)的888张图像。患者组进一步细分为有(n = 63)和无(n = 29)DSPN的患者。结果:与以前的结果相比,我们实现了更好的神经纤维检测(识别神经纤维像素的灵敏度和特异性为91.7%)。神经形态的自动定量显示与先前报道的,手动测量的特征高度相关。手动和自动测量方案的接收器操作特征(ROC)分析在区分DSPN患者和未发现DSPN的患者时得出了相似的结果:在相同的错误率点,AUC约为0.77,灵敏度特异性为72%。结论:CCM图像中角膜神经的自动定量为识别DSPN提供了灵敏的工具。其性能相当于手动定量,同时提高了速度和可重复性。意义:CCM是一种新颖的体内成像方式,具有成为周围神经病变的非侵入性和客观图像生物标志物的潜力。神经形态的自动定量是在早期诊断和评估进展中迈出的重要一步,尤其是用于临床试验以建立对糖尿病和其他周围神经病的治疗益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号