首页> 外文期刊>IEEE Transactions on Biomedical Engineering >A Manifold Regularized Multi-Task Learning Model for IQ Prediction From Two fMRI Paradigms
【24h】

A Manifold Regularized Multi-Task Learning Model for IQ Prediction From Two fMRI Paradigms

机译:来自两个FMRI范式的IQ预测多任务学习模型

获取原文
获取原文并翻译 | 示例

摘要

Objective: Multi-modal brain functional connectivity (FC) data have shown great potential for providing insights into individual variations in behavioral and cognitive traits. The joint learning of multi-modal data can utilize intrinsic association, and thus can boost learning performance. Although several multi-task based learning models have already been proposed by viewing feature learning on each modality as one task, most of them ignore the structural information inherent across the modalities, which may play an important role in extracting discriminative features. Methods: In this paper, we propose a new manifold regularized multi-task learning model by simultaneously considering between-subject and between-modality relationships. Specifically, the $l_{2,1}$-norm (i.e., group-sparsity) regularizer is enforced to jointly select a few common features across different modalities. A novelly designed manifold regularizer is further imposed as a crucial underpinning to preserve the structural information both within and between modalities. Such designed regularizers will make our model more adaptive to realistic neuroimaging data, which are usually of small sample size but high dimensional features. Results: Our model is validated on the Philadelphia Neurodevelopmental Cohort dataset, where our modalities are regarded as two types of functional MRI (fMRI) data collected under two paradigms. We conduct experimental studies on fMRI-based FC network data in two task conditions for intelligence quotient (IQ) prediction. The results show that our proposed model can not only achieve improved prediction performance, but also yield a set of IQ-relevant biomarkers. Conclusion and Significance: This paper develops a new multi-task learning model, enabling the discovery of significant biomarkers that may account for a proportion of the variance in human intelligence.
机译:目的:多模态脑功能连通性(FC)数据表明了在行为和认知性状的各种变化中提供了洞察力的巨大潜力。多模态数据的联合学习可以利用内在关联,从而可以提高学习性能。尽管通过将每个码形的特征学习提出了几种基于多任务的学习模型作为一个任务,但是大多数忽略了模型中固有的结构信息,这可能在提取识别特征方面发挥重要作用。方法:在本文中,我们通过同时考虑对象和模态关系之间的同时提出新的歧管正则化多任务学习模型。具体而言,强制执行$ l_ {2,1} $ - norm(即,组 - 稀疏性)规范器,以共同选择跨不同模式的少数共同点。新颖的设计歧管规范器进一步被施加成一个至关重要的支撑,以保留模态内部和之间的结构信息。这种设计的常规程序将使我们的模型更适应于现实的神经影像数据,这通常是小样本尺寸,但高维度特征。结果:我们的型号在费城神经发作的队列数据集上验证,我们的方式被视为在两个范式下收集的两种功能MRI(FMRI)数据。我们在智能商(IQ)预测中的两个任务条件下对基于FMRI的FC网络数据进行实验研究。结果表明,我们所提出的模型不仅可以实现改进的预测性能,还可以产生一组相关的生物标志物。结论和意义:本文开发了一种新的多任务学习模型,可以发现可能占人类智能方差比例的重要生物标志物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号