首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Investigating the Effect of Short Term Responsive VNS Therapy on Sleep Quality Using Automatic Sleep Staging
【24h】

Investigating the Effect of Short Term Responsive VNS Therapy on Sleep Quality Using Automatic Sleep Staging

机译:使用自动睡眠分期研究短期响应性VNS治疗对睡眠质量的影响

获取原文
获取原文并翻译 | 示例

摘要

Objective: The goal of this work is to objectively evaluate the effectiveness of responsive (or closed-loop) Vagus nerve stimulation (VNS) therapy in sleep quality in patients with medically refractory epilepsy. Methods: Using quantitative features obtained from electroencephalography, we first developed a new automatic sleep-staging framework that consists of a multi-class support vector machine (SVM) classification, based on a decision tree approach. To train and evaluate the performance of the framework, we used polysomnographic data of 23 healthy subjects from the PhysioBank database where the sleep stages have been visually annotated. We then used the trained classifier to label the sleep stages using data from 22 patients with epilepsy, treated with short term responsive VNS therapy during an epilepsy-monitoring unit visit, one month after VNS implantation, and ten VNS-naive patients with epilepsy. Results: Application of multi-class SVM classifier to classify the three sleep stages of awake, light sleep + rapid eye movement, and deep sleep achieved a classification accuracy of 90%. Results of the application of this methodology to VNS-treated and VNS-naive patients revealed that the patients treated with short term responsive VNS therapy showed significant increase in sleep efficiency, and significant decrease in seizures plus interictal epileptiform discharges and awakenings. Conclusion: These results indicate that VNS treatment can reduce the epileptiform activities and thus help in achieving better sleep quality for patients with epilepsy. Significance: The proposed approach can be used to investigate the effect of long-term VNS therapy on sleep quality.
机译:目的:这项工作的目的是客观地评估响应性(或闭环)迷走神经刺激(VNS)疗法对难治性癫痫患者睡眠质量的有效性。方法:利用脑电图的定量特征,我们首先基于决策树方法,开发了一种新的自动睡眠分期框架,该框架由多类支持向量机(SVM)分类组成。为了训练和评估框架的性能,我们使用了PhysioBank数据库中23位健康受试者的多导睡眠监测数据,其中睡眠阶段已在视觉上进行了注释。然后,我们使用训练有素的分类器,使用来自22例癫痫患者的数据标记睡眠阶段,这些数据是在VNS植入后一个月(即VNS植入后一个月)和10例初次VNS癫痫的患者中,在癫痫监测单元访问期间接受了短期响应性VNS治疗。结果:应用多类SVM分类器对清醒,轻度睡眠+快速眼动和深度睡眠这三个睡眠阶段进行分类,分类精度达到90%。该方法对VNS治疗和VNS初治患者的应用结果表明,接受短期反应性VNS治疗的患者的睡眠效率显着提高,癫痫发作以及发作间期癫痫样放电和觉醒显着降低。结论:这些结果表明,VNS治疗可以减少癫痫样活动,从而有助于改善癫痫患者的睡眠质量。启示:该方法可用于研究长期VNS治疗对睡眠质量的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号