首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Separation of Subcutaneous Fat From Muscle in Surface Electrical Impedance Myography Measurements Using Model Component Analysis
【24h】

Separation of Subcutaneous Fat From Muscle in Surface Electrical Impedance Myography Measurements Using Model Component Analysis

机译:使用模型成分分析在表面电阻抗肌电图测量中从肌肉中分离皮下脂肪

获取原文
获取原文并翻译 | 示例

摘要

Objective: Electrical impedance myography (EIM) is a relatively new technique to assess neuromuscular disorders (NMD). Although the application of EIM using surface electrodes (sEIM) has been adopted by the neurology community in recent years to evaluate NMD status, sEIM's sensitivity as a biomarker of skeletal muscle condition is impacted by subcutaneous fat (SF) tissue. Here, we develop a method that is able to remove the contribution of SF from sEIM data. Methods: We evaluate independent component analysis (ICA) and principal component analysis (PCA) for this purpose. Then, we introduce the so-called model component analysis (MCA). All methods are validated with numerical simulations using impedivity data from SF and muscle tissues. The methods are then tested with measurements performed in diseased individuals (n = 3). Results: Simulations demonstrate that MCA is the most accurate method at separating the impedivity of SF and muscle tissues with the accuracy being 99.2%, followed by ICA with 51.4%, and finally PCA with 38.5%. Experimental results from sEIM data measured on the triceps brachii of patients are consistent with muscle grayscale level values obtained using ultrasound imaging. Conclusion: MCA can be used to separate the impedivity of SF and muscle tissues from sEIM data, thus increasing the sensitivity to detect changes in the muscle. Significance: MCA can make the sEIM technique a better diagnostic tool and biomarker of disease progression and response to therapy by removing the confounding effect of SF tissue in NMD patients with excess subcutaneous fat tissue for any reason.
机译:目的:电阻抗肌电图(EIM)是一种相对较新的评估神经肌肉疾病(NMD)的技术。尽管近年来神经病学界已采用表面电极(sEIM)的EIM应用来评估NMD状态,但皮下脂肪(SF)组织影响sEIM作为骨骼肌状况生物标志物的敏感性。在这里,我们开发了一种能够从sEIM数据中消除SF贡献的方法。方法:为此,我们评估独立成分分析(ICA)和主成分分析(PCA)。然后,我们介绍所谓的模型成分分析(MCA)。所有方法均使用来自SF和肌肉组织的阻抗数据,通过数值模拟进行了验证。然后对患病个体(n = 3)进行测量以测试这些方法。结果:仿真表明,MCA是分离SF和肌肉组织阻抗的最准确方法,准确度为99.2%,其次是ICA,为51.4%,最后是PCA,为38.5%。从患者肱三头肌上测量的sEIM数据得出的实验结果与使用超声成像获得的肌肉灰度水平值一致。结论:MCA可用于从sEIM数据中分离出SF和肌肉组织的阻抗,从而提高了检测肌肉变化的敏感性。意义:MCA可以消除由于任何原因导致皮下脂肪组织过多的NMD患者的SF组织的混杂效应,从而使sEIM技术成为疾病发展和对治疗反应的更好的诊断工具和生物标志物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号