首页> 外文期刊>Biomedical and Health Informatics, IEEE Journal of >ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach
【24h】

ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach

机译:元素:基于耦合区域生长和机器学习方法的多模态视网膜血管分割

获取原文
获取原文并翻译 | 示例

摘要

Vascular structures in the retina contain important information for the detection and analysis of ocular diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. Commonly used modalities in diagnosis of these diseases are fundus photography, scanning laser ophthalmoscope (SLO) and fluorescein angiography (FA). Typically, retinal vessel segmentation is carried out either manually or interactively, which makes it time consuming and prone to human errors. In this research, we propose a new multi-modal framework for vessel segmentation called ELEMENT (v E sse L s E gmentation using M achine l E arning and co N nec T ivity). This framework consists of feature extraction and pixel-based classification using region growing and machine learning. The proposed features capture complementary evidence based on grey level and vessel connectivity properties. The latter information is seamlessly propagated through the pixels at the classification phase. ELEMENT reduces inconsistencies and speeds up the segmentation throughput. We analyze and compare the performance of the proposed approach against state-of-the-art vessel segmentation algorithms in three major groups of experiments, for each of the ocular modalities. Our method produced higher overall performance, with an overall accuracy of 97.40%, compared to 25 of the 26 state-of-the-art approaches, including six works based on deep learning, evaluated on the widely known DRIVE fundus image dataset. In the case of the STARE, CHASE-DB, VAMPIRE FA, IOSTAR SLO and RC-SLO datasets, the proposed framework outperformed all of the state-of-the-art methods with accuracies of 98.27%, 97.78%, 98.34%, 98.04% and 98.35%, respectively.
机译:视网膜中的血管结构包含对眼部疾病的检测和分析的重要信息,包括与年龄相关的黄斑变性,糖尿病视网膜病变和青光眼。常用的诊断方式这些疾病是眼底摄影,扫描激光眼镜镜(SLO)和荧光素血管造影(FA)。通常,视网膜血管分割是手动或交互方式进行,这使得它耗时并且容易容易出现人类误差。在这项研究中,我们向船只分割提出了一个名为Element的船只分割的新多模态框架(v <粗体xmlns:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http:/ / www.w3.org/1999/xlink“> e sse <粗体xmlns:mml =”http://www.w3.org/1998/math/mathml“xmlns:xlink =”http:// www.w3.org/1999/xlink“> l s <粗体xmlns:mml =”http://www.w3.org/1998/math/mathml“xmlns:xlink =”http:// www .w3.org / 1999 / xlink“> e 使用<粗体xmlns:mml =”http://www.w3.org/1998/math/mathml“xmlns:xlink =”http:// www .w3.org / 1999 / xlink“> m achine l e arning和co n nec <粗体xmlns:mml =”http://www.w3.org/1998/math/mathml“xmlns:xlink =”http:// www .w3.org / 1999 / xlink“> t inal)。该框架包括使用区域生长和机器学习的特征提取和基于像素的分类。所提出的特征捕获基于灰度和血管连接性能的互补证据。后一个信息通过分类阶段的像素无缝地传播。元素减少了不一致性并加快分段吞吐量。我们分析并比较拟议方法对艺术血管分割算法的三个主要实验组的性能,每个眼部方式。我们的方法生产较高的整体性能,总体准确性为97.40%,相比26的25个现实方法中的25个,包括六项基于深度学习的工程,在广泛的已知驱动眼底图像数据集上进行评估。在凝视,追逐-DB,吸血鬼FA,Iostar SLO和RC-SLO数据集的情况下,所提出的框架优于所有最先进的方法,精度为98.27%,97.78%,98.34%,98.04 %和98.35%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号