首页> 外文期刊>Biomedical and Health Informatics, IEEE Journal of >Quantitative Whole Slide Assessment of Tumor-Infiltrating CD8-Positive Lymphocytes in ER-Positive Breast Cancer in Relation to Clinical Outcome
【24h】

Quantitative Whole Slide Assessment of Tumor-Infiltrating CD8-Positive Lymphocytes in ER-Positive Breast Cancer in Relation to Clinical Outcome

机译:与临床结果相关的抗阳性乳腺癌肿瘤浸润CD8阳性淋巴细胞的定量整体幻灯片评估

获取原文
获取原文并翻译 | 示例

摘要

There is a need for a reliable and reproducible quantification of the immune infiltrate within the heterogeneous microenvironment of tumors in order to support therapy selection in oncology. Here we present an automated, modular method for whole-slide image analysis of the spatial distribution of tumor-infiltrating CD8-positive lymphocytes. The method uses a deep learning tissue-type classification algorithm on the hematoxylin eosin (HE) stained tissue section to identify the central tumor (CT) and invasive margin (IM) of the tumor. A CD8-positive cell detection algorithm using a deep learning-based nucleus detection is applied to a sequential immunohistochemistry (IHC)-stained tissue section. Image registration then allows obtaining IHC-derived CD8 scores for the HE-derived CT and the IM, respectively. Both, the mean and the standard deviation of the spatial CD8-positive density distributions were determined for the CT and IM in a cohort of post-menopausal, estrogen receptor-positive invasive breast cancer patients who received adjuvant tamoxifen therapy. Spatial density distributions were found to be highly heterogeneous. In contrast to previous studies, CD8 density in the IM and CT correlated positively with clinical outcome. However, statistical significance was only achieved for the standard deviation of the CD8 density distribution. We hypothesize that this is due to the positive contribution of local high-density areas. The IM/CT density ratio did not correlate with outcome. In view of the clinical relevance of our finding, we would like to encourage a study with a larger cohort. Our modular pipeline approach allows a robust and objective scoring of CD8 infiltrate based on routine pathology staining and should contribute to clinical adoption of computational pathology.
机译:需要在肿瘤的异质微环境内可靠和可再现的免疫浸润量化,以支持肿瘤学中的治疗选择。在这里,我们为肿瘤浸润的CD8阳性淋巴细胞的空间分布提供了一种自动化的模块化方法,用于肿瘤浸润的CD8阳性淋巴细胞的空间分布。该方法使用深层学习组织型分类算法在苏木辛eosin(HE)染色的组织切片上,以鉴定肿瘤的中央肿瘤(CT)和侵入性边缘(IM)。使用深层学习的核检测的CD8阳性细胞检测算法应用于顺序免疫组织化学(IHC)染色的组织切片。然后,图像注册然后允许分别获得HE-ermived CT和IM的IHC衍生的CD8分数。在预接受佐剂Tamoxifen疗法的绝经后雌激素受体症患者的群组中,确定空间CD8阳性密度分布的平均值和标准偏差。发现空间密度分布是高度异质的。与先前的研究相比,IM和CT中的CD8密度随着临床结果与CT相关。然而,仅对CD8密度分布的标准偏差实现了统计显着性。我们假设这是由于本地高密度区域的积极贡献。 IM / CT密度比与结果无关。鉴于我们发现的临床相关性,我们想鼓励与更大的队列进行研究。我们的模块化管道方法允许基于常规病理染色的CD8浸润的强大和客观评分,并应有助于临床采用计算病理学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号