...
首页> 外文期刊>Biological Cybernetics >Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics
【24h】

Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics

机译:结合神经生物学,建模和机器人技术,对sal的步态生成机制进行解码

获取原文
获取原文并翻译 | 示例
           

摘要

Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.
机译:脊椎动物动物表现出令人印象深刻的运动能力。这些运动技能是由于环境,肌肉骨骼系统和中枢神经系统(特别是脊柱运动回路)之间复杂的相互作用所致。从进化的角度来看,我们有兴趣对the中的这些相互作用进行解码,sal是一种重要的动物。它既具有游泳步态又具有步态步态,并且面临着在密度,粘度和重力载荷存在显着物理差异的两种环境中,使用相同的肌肉骨骼系统产生有效推进力的问题。但是它的神经系统仍然比较简单。我们的方法是基于神经生理实验,不同抽象级别的数值建模以及使用两栖sal类机器人进行的机器人验证的结合。本文回顾了我们对sal运动控制的知识的现状,并介绍了我们的方法如何使我们获得了spin脊髓运动网络的第一个概念模型。该模型表明the运动回路可以看作是控制躯干和尾巴轴向运动的七lamp鳗状运动回路,并通过控制肢体运动的专门振荡中心来扩展。两种类型的电路之间的相互作用决定了在感觉反馈和下降驱动的影响下的运动模式,低速时有步态,高速时有游动。

著录项

  • 来源
    《Biological Cybernetics》 |2013年第5期|545-564|共20页
  • 作者单位

    Biorobotics Laboratory School of Engineering École Polytechnique Fédérale de Lausanne">(1);

    Groupe de Recherche sur le Système Nerveux Central Département de Physiologie Université de Montréal">(2);

    Biorobotics Laboratory School of Engineering École Polytechnique Fédérale de Lausanne">(1);

    Department of Computational Biology KTH Royal Institute of Technology School of Computer Science and Engineering">(3);

    Department of Biological Cybernetics Faculty of Biology University of Bielefeld">(4);

    INSERM U862 Neurocentre Magendie Motor System Diseases Group Université Bordeaux">(5);

    Department of Computational Biology KTH Royal Institute of Technology School of Computer Science and Communication">(6);

    INSERM U862 Neurocentre Magendie Motor System Diseases Group Université Bordeaux">(5);

    Biorobotics Laboratory School of Engineering École Polytechnique Fédérale de Lausanne">(1);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Salamander; Locomotion; Oscillators; Modeling; Neurobiology; Robotics;

    机译:蝾;运动;振荡器;造型;神经生物学;机器人技术;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号