首页> 外文期刊>Bioinformatics >A multi-array multi-SNP genotyping algorithm for Affymetrix SNP microarrays
【24h】

A multi-array multi-SNP genotyping algorithm for Affymetrix SNP microarrays

机译:Affymetrix SNP微阵列的多阵列多SNP基因分型算法

获取原文
获取原文并翻译 | 示例

摘要

Motivation: Modern strategies for mapping disease loci require efficient genotyping of a large number of known polymorphic sites in the genome. The sensitive and high-throughput nature of hybridization-based DNA microarray technology provides an ideal platform for such an application by interrogating up to hundreds of thousands of single nucleotide polymorphisms (SNPs) in a single assay. Similar to the development of expression arrays, these genotyping arrays pose many data analytic challenges that are often platform specific. Affymetrix SNP arrays, e.g. use multiple sets of short oligonucleotide probes for each known SNP, and require effective statistical methods to combine these probe intensities in order to generate reliable and accurate genotype calls.Results: We developed an integrated multi-SNP, multi-array genotype calling algorithm for Affymetrix SNP arrays, MAMS, that combines single-array multi-SNP (SAMS) and multi-array, single-SNP (MASS) calls to improve the accuracy of genotype calls, without the need for training data or computation-intensive normalization procedures as in other multi-array methods. The algorithm uses resampling techniques and model-based clustering to derive single array based genotype calls, which are subsequently refined by competitive genotype calls based on (MASS) clustering. The resampling scheme caps computation for single-array analysis and hence is readily scalable, important in view of expanding numbers of SNPs per array. The MASS update is designed to improve calls for atypical SNPs, harboring allele-imbalanced binding affinities, that are difficult to genotype without information from other arrays. Using a publicly available data set of HapMap samples from Affymetrix, and independent calls by alternative genotyping methods from the HapMap project, we show that our approach performs competitively to existing methods.Availability: R functions are available upon request from the authors.
机译:动机:绘制疾病位点的现代策略要求对基因组中大量已知的多态性位点进行有效的基因分型。基于杂交的DNA微阵列技术的灵敏和高通量性质,通过在单个测定中询问多达数十万个单核苷酸多态性(SNP),为此类应用程序提供了理想的平台。与表达阵列的开发相似,这些基因分型阵列带来了许多数据分析挑战,这些挑战通常是平台特定的。 Affymetrix SNP阵列,例如为每个已知的SNP使用多套短寡核苷酸探针,并需要有效的统计方法来结合这些探针强度以产生可靠且准确的基因型调用。结果:我们为Affymetrix开发了集成的多SNP,多阵列基因型调用算法SNP阵列MAMS,它结合了单阵列多SNP(SAMS)和多阵列单SNP(MASS)调用,从而提高了基因型调用的准确性,而无需像图1中那样训练数据或计算密集型标准化程序其他多阵列方法。该算法使用重采样技术和基于模型的聚类来得出基于单个数组的基因型调用,随后通过基于(MASS)聚类的竞争性基因型调用对其进行完善。重采样方案限制了单阵列分析的计算,因此易于扩展,鉴于每个阵列的SNP数量不断增加,这一点很重要。 MASS更新旨在改善对非典型SNP的需求,因为它具有等位基因不平衡的结合亲和力,如果没有其他阵列的信息则很难进行基因分型。使用来自Affymetrix的HapMap样本的公开数据集,以及HapMap项目的替代基因分型方法进行的独立调用,我们证明了我们的方法与现有方法相比具有竞争优势。可用性:R函数可应作者要求提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号