首页> 外文期刊>Big Data, IEEE Transactions on >Analyzing Big Smart Metering Data Towards Differentiated User Services: A Sublinear Approach
【24h】

Analyzing Big Smart Metering Data Towards Differentiated User Services: A Sublinear Approach

机译:分析面向差异化用户服务的大型智能计量数据:一种亚线性方法

获取原文
获取原文并翻译 | 示例

摘要

With the advances of the information and communications technology, and smart meters in particular, fine grained user electricity usage of households is available for analyzing electricity usage behaviors. The information makes it possible for utility companies to provide differentiated user services from the time-of-use perspective, i.e., different pricing for users based upon when and how users consume power. In this paper, we present a methodology on differentiated user services based on extracted characteristic consumer load shapes (usage profiles as a function of time) from a large smart meter data set. We identify distinct user subgroups based upon their actual historic usage patterns, which are represented by the proposed electricity usage distributions. Since the big electricity user data cover millions of users and for each user the data are multi-dimensional and in fine-time granularity, we thus propose a sublinear algorithm to make the computation of the differentiated user service model efficient. The algorithm requests an input of only a small portion of users, and a sublinear amount of the electricity data from each of these selected users. We prove that the algorithm provides performance guarantees. Our simulated evaluation demonstrates the effectiveness of our algorithm and the differentiating user service model.
机译:随着信息和通信技术的发展,特别是智能电表的发展,家庭的细粒度用户用电可用于分析用电行为。该信息使公用事业公司可以从使用时间的角度提供差异化​​的用户服务,即根据用户何时以及如何用电为用户提供不同的价格。在本文中,我们基于从大型智能电表数据集中提取的特征用户负载形状(使用情况作为时间的函数),提出了一种区分用户服务的方法。我们根据用户的实际历史使用模式来确定不同的用户子组,这些用户子组由建议的用电量分布表示。由于大的电力用户数据覆盖了数百万个用户,并且对于每个用户,数据都是多维的且具有精细的时间粒度,因此,我们提出了一种亚线性算法,以使差分用户服务模型的计算效率更高。该算法仅请求一小部分用户的输入,并从这些选择的用户中的每一个用户获取亚线性量的电数据。我们证明了该算法提供了性能保证。我们的模拟评估证明了我们算法和差异化用户服务模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号