首页> 外文期刊>Big Data, IEEE Transactions on >An Extended Spatio-Temporal Granger Causality Model for Air Quality Estimation with Heterogeneous Urban Big Data
【24h】

An Extended Spatio-Temporal Granger Causality Model for Air Quality Estimation with Heterogeneous Urban Big Data

机译:异构城市大数据的空气质量估计的时空扩展格兰杰因果关系模型

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with city-wide air quality estimation with limited air quality monitoring stations which are geographically sparse. Since air pollution is influenced by urban dynamics (e.g., meteorology and traffic) which are available throughout the city, we can infer the air quality in regions without monitoring stations based on such spatial-temporal (ST) heterogeneous urban big data. However, big data-enabled estimation poses three challenges. The first challenge is data diversity, i.e., there are many different categories of urban data, some of which may be useless for the estimation. To overcome this, we extend Granger causality to the ST space to analyze all the causality relations in a consistent manner. The second challenge is the computational complexity due to processing the massive volume of data. To overcome this, we introduce the non-causality test to rule out urban dynamics that do not “Granger” cause air pollution, and the region of influence (ROI), which enables us to only analyze data with the highest causality levels. The third challenge is to adapt our grid-based algorithm to non-grid-based applications. By developing a flexible grid-based estimation algorithm, we can decrease the inaccuracies due to grid-based algorithm while maintaining computation efficiency.
机译:本文使用地理稀疏的有限空气质量监测站来处理整个城市的空气质量估算。由于空气污染受到整个城市可用的城市动力学(例如气象和交通)的影响,因此我们可以基于此类时空(ST)异类城市大数据来推断没有监测站的区域的空气质量。但是,基于大数据的估计带来了三个挑战。第一个挑战是数据多样性,即有许多不同类别的城市数据,其中一些可能对估算没有用。为了克服这个问题,我们将Granger因果关系扩展到ST空间,以一致的方式分析所有因果关系。第二个挑战是由于处理大量数据而导致的计算复杂性。为了克服这个问题,我们引入了非因果关系检验,以排除不会“格兰奇”造成空气污染的城市动态以及影响范围(ROI),这使我们只能分析因果关系水平最高的数据。第三个挑战是使我们的基于网格的算法适应非基于网格的应用程序。通过开发一种灵活的基于网格的估计算法,我们可以减少基于网格的算法带来的不准确性,同时保持计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号