【24h】

Granger-Causality-based air quality estimation with spatio-temporal (S-T) heterogeneous big data

机译:基于Granger因果关系的时空(S-T)异构大数据空气质量估算

获取原文

摘要

This paper considers city-wide air quality estimation with limited available monitoring stations which are geographically sparse. Since air pollution is highly spatio-temporal (S-T) dependent and considerably influenced by urban dynamics (e.g., meteorology and traffic), we can infer the air quality not covered by monitoring stations with S-T heterogeneous urban big data. However, estimating air quality using S-T heterogeneous big data poses two challenges. The first challenge is due to with the data diversity, i.e., there are different categories of urban dynamics and some may be useless and even detrimental for the estimation. To overcome this, we first propose an S-T extended Granger causality model to analyze all the causalities among urban dynamics in a consistent manner. Then by implementing non-causality test, we rule out the urban dynamics that do not “Granger” cause air pollution. The second challenge is due to the time complexity when processing the massive volume of data. We propose to discover the region of influence (ROI) by selecting data with the highest causality levels spatially and temporally. Results show that we achieve higher accuracy using “part” of the data than “all” of the data. This may be explained by the most influential data eliminating errors induced by redundant or noisy data. The causality model observation and the city-wide air quality map are illustrated and visualized using data from Shenzhen, China.
机译:本文考虑了有限的可用监测站(地理稀疏)对全市空气质量的估计。由于空气污染高度依赖于时空(S-T),并且受到城市动态因素(例如气象和交通)的很大影响,因此我们可以推断出具有S-T异类城市大数据的监测站无法涵盖的空气质量。但是,使用S-T异构大数据估算空气质量带来了两个挑战。第一个挑战是由于数据多样性造成的,即存在不同类别的城市动态,其中一些可能无用甚至有害于估算。为了克服这个问题,我们首先提出一个S-T扩展的Granger因果关系模型,以一致的方式分析城市动态之间的所有因果关系。然后通过实施非因果关系检验,我们排除了不会“格兰奇”造成空气污染的城市动态。第二个挑战是由于处理大量数据时的时间复杂性。我们建议通过选择时空上具有最高因果关系水平的数据来发现影响区域(ROI)。结果表明,使用“部分”数据比“全部”数据可获得更高的准确性。可以用最有影响力的数据消除由冗余或嘈杂的数据引起的错误来解释。使用来自中国深圳的数据,对因果关系模型观测结果和全市空气质量地图进行了图示和可视化。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号