首页> 外文期刊>Big Data, IEEE Transactions on >Incremental Deep Computation Model for Wireless Big Data Feature Learning
【24h】

Incremental Deep Computation Model for Wireless Big Data Feature Learning

机译:无线大数据特征学习的增量深层计算模型

获取原文
获取原文并翻译 | 示例

摘要

Big data feature learning is a crucial issue for the service management for Internet of Things. However, big data collected from Internet of Things is of dynamic nature at a high speed, which poses an important challenge on wireless big data learning models, especially the deep computation model. In this paper, an incremental deep computation model is proposed for wireless big data feature learning in Internet of Things. First, two incremental tensor auto-encoders (ITAE) are developed by devising two incremental learning algorithms, namely parameter-based incremental learning algorithm (PI-TAE) and structure-based incremental learning algorithm (SI-TAE), when new wireless samples are available. PI-TAE only updates the network parameters while SI-TAE simultaneously adjusts the structure and updates the parameters to adapt to the new arriving wireless big data. Furthermore, an incremental deep computation model is constructed by stacking several ITAEs. Experiments are conducted to evaluate the performance of the proposed model by comparing with the conventional deep computation model and other two representative incremental learning algorithms, i.e., OANN and PIE. Results demonstrate that the presented model can modify the network in an incremental manner for new arriving data learning efficiently with preserving the prior knowledge for the previous data learning, proving its potential for dynamic wireless big data learning in Internet of Things.
机译:大数据特征学习是用于物联网服务管理的重要问题。然而,从事互联网收集的大数据以高速提高了动态性质,这对无线大数据学习模型构成了重要挑战,尤其是深度计算模型。在本文中,提出了一种用于物联网无线大数据特征学习的增量深度计算模型。首先,通过设计两个增量学习算法,即基于参数的增量学习算法(PI-TAE)和基于结构的增量学习算法(SI-TAE),开发了两个增量张量自动编码器(ITAE)。当新的无线样本是时可用的。 PI-TAE仅更新网络参数,而SI-TAE同时调整结构并更新参数以适应新的到达无线大数据。此外,通过堆叠几个ITAES构建增量深度计算模型。进行实验以通过与传统的深度计算模型和其他两个代表增量学习算法进行比较来评估所提出的模型的性能,即OANN和PIE。结果表明,所呈现的模型可以以增量方式修改网络,以便为新的到达数据学习,以保留先前的数据学习的先验知识,从而证明其在物联网上的动态无线大数据学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号