首页> 外文期刊>IEEE transactions on industrial informatics >An Incremental Deep Convolutional Computation Model for Feature Learning on Industrial Big Data
【24h】

An Incremental Deep Convolutional Computation Model for Feature Learning on Industrial Big Data

机译:工业大数据特征学习的增量深卷积计算模型

获取原文
获取原文并翻译 | 示例

摘要

The deep convolutional computation model (DCCM) enabled remarkable progress in feature learning of industrial big data in Internet of Things. However, as a typical static deep learning model, it is difficult to learn features for incremental industrial big data. To solve this problem, we propose an incremental DCCM by developing two incremental algorithms, i.e., parameter-incremental algorithm and structure-incremental algorithm. The parameter-incremental algorithm aims to incrementally train the fully connected layers together with fine tuning for incorporating the new knowledge into the prior one. Then, the structure-incremental algorithm is used to transfer the previous knowledge by introducing an updating rule of the tensor convolutional, pooling, and fully connected layers. Furthermore, the dropout strategy is extended into the tensor fully connected layer to improve the robustness of the proposed model. Finally, extensive experiments are carried out on the representative datasets including CIFRA and CUAVE to justify the proposed model in terms of adaption, preservation, and convergence efficiency.
机译:深度卷积计算模型(DCCM)在互联网上的工业大数据的特征学习中启用了显着进展。然而,作为典型的静态深度学习模型,难以学习增量工业大数据的功能。为了解决这个问题,我们通过开发两个增量算法,即参数 - 增量算法和结构 - 增量算法提出增量DCCM。参数 - 增量算法旨在将完全连接的层逐渐培训,以及微调将新知识结合到前一体中。然后,通过引入张量卷积,池和完全连接层的更新规则来使用结构增量算法来传送先前的知识。此外,辍学策略延伸到张量完全连接层,以提高所提出的模型的鲁棒性。最后,在包括CIFRA和Cuave的代表性数据集上进行了广泛的实验,以便在适应,保存和收敛效率方面证明所提出的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号