首页> 外文期刊>Behavior Research Methods, Instruments & Computers >QMPE: Estimating Lognormal, Wald, and Weibull RT distributions with a parameter-dependent lower bound
【24h】

QMPE: Estimating Lognormal, Wald, and Weibull RT distributions with a parameter-dependent lower bound

机译:QMPE:估计对数正态,Wald和Weibull RT分布,其下限取决于参数

获取原文
获取原文并翻译 | 示例

摘要

We describe and test quantile maximum probability estimator (QMPE), an open-source ANSI Fortran 90 program for response time distribution estimation. QMPE enables users to estimate parameters for the ex-Gaussian and Gumbel (1958) distributions, along with three "shifted" distributions (i,e., distributions with a parameter-dependent lower bound): the Lognormal, Wald, and Weibull distributions. Estimation can be performed using either the standard continuous maximum likelihood (CML) method or quantile maximum probability (QMP; Heathcote & Brown, in press). We review the properties of each distribution and the theoretical evidence showing that CML estimates fail for some cases with shifted distributions, whereas QMP estimates do not. In cases in which CML does not fail, a Monte Carlo investigation showed that QMP estimates were usually as good, and in some cases better, than CML estimates. However, the Monte Carlo study also uncovered problems that can occur with both CML and QMP estimates, particularly when samples are small and skew is low, highlighting the difficulties of estimating distributions with parameter-dependent lower bounds.
机译:我们描述并测试分位数最大概率估计器(QMPE),这是一个用于响应时间分布估计的开源ANSI Fortran 90程序。 QMPE使用户能够估计前高斯和Gumbel(1958)分布的参数,以及三个“偏移”分布(即具有与参数有关的下限的分布):对数正态分布,Wald和Weibull分布。可以使用标准连续最大似然(CML)方法或分位数最大概率(QMP; Heathcote&Brown,印刷中)进行估计。我们回顾了每种分布的性质以及理论证据,这些结果表明,在某些情况下,具有分布分布变化的情况下CML估计会失败,而QMP估计不会。在CML没有失败的情况下,蒙特卡洛调查显示QMP估计值通常与CML估计值一样好,在某些情况下还更好。但是,蒙特卡洛研究还发现了CML和QMP估计都可能出现的问题,特别是在样本量较小且偏度较低的情况下,这突出了估计依赖于参数的下限分布的困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号