首页> 外文期刊>Behavior Research Methods, Instruments & Computers >Identifying reading strategies using latent semantic analysis: Comparing semantic benchmarks
【24h】

Identifying reading strategies using latent semantic analysis: Comparing semantic benchmarks

机译:使用潜在语义分析确定阅读策略:比较语义基准

获取原文
获取原文并翻译 | 示例

摘要

We explored methods of using latent semantic analysis (LSA) to identify reading strategies in students' self-explanations that are collected as part of a Web-based reading trainer. In this study, college students self-explained scientific texts, one sentence at a time. LSA was used to measure the similarity between the self-explanations and semantic benchmarks (groups of words and sentences that together represent reading strategies). Three types of semantic benchmarks were compared: content words, exemplars, and strategies. Discriminant analyses were used to classify global and specific reading strategies using the LSA cosines. All benchmarks contributed to the classification of general reading strategies, but the exemplars did the best in distinguishing subtle semantic differences between reading strategies. Pragmatic and theoretical concerns of using LSA are discussed.
机译:我们探索了使用潜在语义分析(LSA)来识别学生自我解释中的阅读策略的方法,这些方法是作为基于Web的阅读培训者的一部分而收集的。在这项研究中,大学生对科学课本​​进行了自我解释,一次只讲一句话。 LSA被用来测量自我解释和语义基准(一起代表阅读策略的单词和句子组)之间的相似性。比较了三种类型的语义基​​准:内容词,示例和策略。判别分析用于使用LSA余弦对全局和特定阅读策略进行分类。所有基准都对一般阅读策略的分类做出了贡献,但是示例在区分阅读策略之间的细微语义差异方面表现最好。讨论了使用LSA的实用和理论问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号