首页> 外文期刊>Autonomous Robots >A practical approach for EKF-SLAM in an indoor environment: fusing ultrasonic sensors and stereo camera
【24h】

A practical approach for EKF-SLAM in an indoor environment: fusing ultrasonic sensors and stereo camera

机译:室内环境下EKF-SLAM的实用方法:融合超声传感器和立体声相机

获取原文
获取原文并翻译 | 示例

摘要

Improving the practical capability of SLAM requires effective sensor fusion to cope with the large uncertainties from the sensors and environment. Fusing ultrasonic and vision sensors possesses advantages of both economical efficiency and complementary cooperation. In particular, it can resolve the false data association and divergence problem of an ultrasonic sensor-only algorithm and overcome both the low frequency of SLAM update caused by the computational burden and the weakness to illumination changes of a vision sensor-only algorithm. In this paper, we propose a VR-SLAM (Vision and Range sensor-SLAM) algorithm to combine ultrasonic sensors and stereo camera very effectively. It consists of two schemes: (1) extracting robust point and line features from sonar data and (2) recognizing planar visual objects using a multi-scale Harris corner detector and its SIFT descriptor from a pre-constructed object database. We show that fusing these schemes through EKF-SLAM frameworks can achieve correct data association via the object recognition and high frequency update via the sonar features. The performance of the proposed algorithm was verified by experiments in various real indoor environments.
机译:提高SLAM的实际能力需要有效的传感器融合,以应对传感器和环境带来的巨大不确定性。超声波和视觉传感器的融合具有经济效率和互补合作的优势。特别地,它可以解决仅超声传感器算法的错误数据关联和发散问题,并克服了由于计算负担而导致的SLAM更新频率低以及仅视觉传感器算法的照明变化弱的问题。在本文中,我们提出了一种VR-SLAM(视觉和距离传感器-SLAM)算法,可以非常有效地将超声传感器和立体声相机组合在一起。它由两种方案组成:(1)从声纳数据中提取鲁棒的点和线特征;(2)使用多尺度哈里斯拐角检测器及其预先构建的对象数据库中的SIFT描述符识别平面视觉对象。我们表明,通过EKF-SLAM框架融合这些方案可以通过对象识别实现正确的数据关联,并通过声纳功能实现高频更新。通过在各种实际室内环境中进行的实验验证了该算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号