首页> 外文期刊>Autonomous Robots >Robust vision-based robot localization using combinations of local feature region detectors
【24h】

Robust vision-based robot localization using combinations of local feature region detectors

机译:使用局部特征区域检测器的组合进行基于视觉的鲁棒机器人定位

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a vision-based approach for mobile robot localization. The model of the environment is topological. The new approach characterizes a place using a signature. This signature consists of a constellation of descriptors computed over different types of local affine covariant regions extracted from an omnidirectional image acquired rotating a standard camera with a pan-tilt unit. This type of representation permits a reliable and distinctive environment modelling. Our objectives were to validate the proposed method in indoor environments and, also, to find out if the combination of complementary local feature region detectors improves the localization versus using a single region detector. Our experimental results show that if false matches are effectively rejected, the combination of different covariant affine region detectors increases notably the performance of the approach by combining the different strengths of the individual detectors. In order to reduce the localization time, two strategies are evaluated: re-ranking the map nodes using a global similarity measure and using standard perspective view field of 45°. In order to systematically test topological localization methods, another contribution proposed in this work is a novel method to see the degradation in localization performance as the robot moves away from the point where the original signature was acquired. This allows to know the robustness of the proposed signature. In order for this to be effective, it must be done in several, variated, environments that test all the possible situations in which the robot may have to perform localization.
机译:本文提出了一种基于视觉的移动机器人定位方法。环境的模型是拓扑的。新方法使用签名来表征位置。该签名由在不同类型的局部仿射协方差区域上计算出的描述符组成,该局部仿射协方差区域是从使用旋转云台单元旋转标准相机获取的全向图像中提取的。这种类型的表示允许进行可靠且独特的环境建模。我们的目标是在室内环境中验证所提出的方法,并找出与使用单个区域检测器相比,互补局部特征区域检测器的组合是否可以改善定位。我们的实验结果表明,如果有效地拒绝了错误匹配,则通过组合各个检测器的不同强度,不同协变仿射区域检测器的组合可以显着提高该方法的性能。为了减少定位时间,评估了两种策略:使用全局相似性度量对地图节点重新排序以及使用45°的标准透视图视野。为了系统地测试拓扑定位方法,这项工作中提出的另一项贡献是一种新颖的方法,可以看到随着机器人从获取原始签名的位置移开,定位性能会下降。这允许知道所提议签名的鲁棒性。为了使其有效,必须在多种多样的环境中完成,这些环境可以测试机器人可能必须执行定位的所有可能情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号