首页> 外文期刊>Autonomous Mental Development, IEEE Transactions on >Sparsity-Constrained fMRI Decoding of Visual Saliency in Naturalistic Video Streams
【24h】

Sparsity-Constrained fMRI Decoding of Visual Saliency in Naturalistic Video Streams

机译:自然视频流中视觉显着性的稀疏约束fMRI解码

获取原文
获取原文并翻译 | 示例

摘要

Naturalistic stimuli such as video watching have been increasingly used in functional magnetic resonance imaging (fMRI)-based brain encoding and decoding studies since they can provide real and dynamic information that the human brain has to process in everyday life. In this paper, we propose a sparsity- constrained decoding model to explore whether bottom-up visual saliency in continuous video streams can be effectively decoded by brain activity recorded by fMRI, and to examine whether sparsity constraints can improve visual saliency decoding. Specifically, we use a biologically-plausible computational model to quantify the visual saliency in video streams, and adopt a sparse representation algorithm to learn the atomic fMRI signal dictionaries that are representative of the patterns of whole-brain fMRI signals. Sparse representation also links the learned atomic dictionary with the quantified video saliency. Experimental results show that the temporal visual saliency in video stream can be well decoded and the sparse constraints can improve the performance of fMRI decoding models.
机译:诸如视频观看之类的自然刺激已经越来越多地用于基于功能磁共振成像(fMRI)的大脑编码和解码研究,因为它们可以提供人脑在日常生活中必须处理的真实和动态信息。在本文中,我们提出了一种稀疏约束解码模型,以探索连续视频流中的自下而上的视觉显着性是否可以通过fMRI记录的大脑活动有效地解码,并研究稀疏性约束是否可以改善视觉显着性解码。具体来说,我们使用生物学上可行的计算模型来量化视频流中的视觉显着性,并采用稀疏表示算法来学习原子fMRI信号字典,该字典代表了全脑fMRI信号的模式。稀疏表示还将学习到的原子词典与量化的视频显着性联系起来。实验结果表明,视频流中的时间视觉显着性可以得到很好的解码,稀疏约束可以提高fMRI解码模型的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号