首页> 外文期刊>Autonomous agents and multi-agent systems >Bidding Algorithms for Simultaneous Auctions: A Case Study
【24h】

Bidding Algorithms for Simultaneous Auctions: A Case Study

机译:同时拍卖的竞价算法:案例研究

获取原文
获取原文并翻译 | 示例

摘要

This paper describes RoxyBot, one of the top-scoring agents in the First International Trading Agent Competition, TAC-2000. A TAC agent simulates one vision of future travel agents: it represents a set of clients in simultaneous auctions, trading complementary (e.g., airline tickets and hotel reservations) and substitutable (e.g., symphony and theater tickets) goods. RoxyBot faced two key technical challenges in TAC: (ⅰ) allocation — assigning purchased goods to clients at the end of a game instance so as to maximize total client utility, and (ⅱ) completion — determining the optimal quantity of each resource to buy and sell given client preferences, current holdings, and market prices. For the dimensions of TAC, an optimal solution to the allocation problem is tractable, and RoxyBot uses a search algorithm based on A~* to produce optimal allocations. An optimal solution to the completion problem is also tractable, but in the interest of minimizing bidding cycle time, RoxyBot solves the completion problem using beam search with a greedy heuristic, producing approximately optimal completions. RoxyBot's completer relies on an innovative data structure called a priceline.
机译:本文介绍了RoxyBot,它是第一届TAC-2000国际贸易代理商竞赛中得分最高的代理商。 TAC代理商模拟了未来旅行代理商的一种愿景:它代表一组同时进行拍卖,交易互补性商品(例如机票和酒店预订)和可替代商品(例如交响乐和剧院门票)的客户。 RoxyBot在TAC中面临两个关键的技术挑战:(ⅰ)分配-在游戏实例结束时将购买的商品分配给客户,以最大程度地提高客户的总体使用效率;以及(ⅱ)完成-确定每种资源的最佳购买量和根据给定的客户偏好,当前持股量和市场价格进行出售。对于TAC的维度,分配问题的最优解决方案是很容易解决的,RoxyBot使用基于A〜*的搜索算法来生成最优分配。完工问题的最佳解决方案也很容易解决,但是为了最大程度地减少投标周期,RoxyBot使用带有贪婪启发式的波束搜索解决了完工问题,从而产生了近似最优的完工情况。 RoxyBot的完成程序依赖于一种称为价格线的创新数据结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号