首页> 外文期刊>IEEE transactions on automation science and engineering >Computation of three-dimensional rigid-body dynamics with multiple unilateral contacts using time-stepping and Gauss-Seidel methods
【24h】

Computation of three-dimensional rigid-body dynamics with multiple unilateral contacts using time-stepping and Gauss-Seidel methods

机译:使用时间步长和高斯-赛德尔方法计算具有多个单边接触的三维刚体动力学

获取原文
获取原文并翻译 | 示例

摘要

A system of rigid bodies with multiple simultaneous unilateral contacts is considered in this paper. The problem is to predict the velocities of the bodies and the frictional forces acting on the simultaneous multicontacts. This paper presents a numerical method based on an extension of an explicit time-stepping scheme and an application of the differential inclusion process introduced by J. J. Moreau. From a differential kinematic analysis of contacts, we derive a set of transfer equations in the velocity-based time-stepping formulation. In applying the Gauss-Seidel iterative scheme, the transfer equations are combined with the Signorini conditions and Coulomb's friction law. The contact forces are properly resolved in each iteration, without resorting to any linearization of the friction cone. The proposed numerical method is illustrated with examples, and its performance is compared with an acceleration-based scheme using linear complementary techniques. Multibody contact systems are broadly involved in many engineering applications. The motivation of this is to solve for the contact forces and body motion for planning the fixture-inserting operation. However, the results of the paper can be generally used in problems involving multibody contacts, such as robotic manipulation, mobile robots, computer graphics and simulation, etc. The paper presents a numerical method based on an extension of an explicit time-stepping scheme, and an application of the differential inclusion process introduced by J. J. Moreau, and compares the numerical results with an acceleration-based scheme with linear complementary techniques. We first describe the mathematical model of contact kinematics of smooth rigid bodies. Then, we present the Gauss-Seidel iterative method for resolving the multiple simultaneous contacts within the time-stepping framework. Finally, numerical examples are given and compared with the previous results of a different approach, which shows that the simulation results of these two methods agree well, and it is also generally more efficient, as it is an explicit method. This paper focuses on the description of the proposed time-stepping and Gauss-Seidel iterations and their numerical implementation, and several theoretical issues are yet to be resolved,- like the convergence and uniqueness of the Gauss-Seidel iteration, and the existence and uniqueness of a positive k in solving frictional forces. However, our limited numerical experience has indicated positive answers to these questions. We have always found a single positive root of k and a convergent solution in the Gauss-Seidel iteration for all of our examples.
机译:本文考虑了具有多个同时单边接触的刚体系统。问题在于预测物体的速度以及作用在同时多触点上的摩擦力。本文提出了一种数值方法,该方法基于显式时间步长方案的扩展以及由J. J. Moreau引入的微分包含过程的应用。从接触的微分运动学分析中,我们得出了基于速度的时步公式中的一组传递方程。在应用高斯-塞德尔迭代方案时,将传递方程与Signorini条件和库仑摩擦定律相结合。接触力在每次迭代中均得到适当解决,而无需借助摩擦锥的任何线性化。举例说明了所提出的数值方法,并将其性能与使用线性互补技术的基于加速度的方案进行了比较。多体接触系统广泛涉及许多工程应用。这样做的动机是解决用于计划固定装置插入操作的接触力和身体运动。但是,本文的结果通常可用于涉及多体接触的问题,例如机器人操纵,移动机器人,计算机图形学和仿真等。本文提出了一种基于显式时间步长方案扩展的数值方法,以及JJ Moreau引入的微分包含过程的应用,并将数值结果与基于线性补充技术的基于加速度的方案进行了比较。我们首先描述光滑刚体的接触运动学数学模型。然后,我们提出了在时间步长框架内解决多个同时接触的高斯-塞德尔迭代方法。最后,给出了数值示例并将其与另一种方法的先前结果进行比较,这表明这两种方法的仿真结果吻合良好,并且由于它是一种显式方法,因此通常也更有效。本文着重于对所提出的时间步长和高斯-塞德尔迭代及其数值实现的描述,还有一些理论问题尚待解决,例如高斯-塞德尔迭代的收敛性和唯一性,以及存在性和唯一性。在解决摩擦力时的正k值。但是,我们有限的数字经验显示了对这些问题的肯定答案。对于我们的所有示例,我们始终在高斯-塞德尔迭代中找到k的单个正根和收敛解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号