首页> 外文期刊>IEEE transactions on automation science and engineering >Drift compensation for automatic nanomanipulation with scanning probe microscopes
【24h】

Drift compensation for automatic nanomanipulation with scanning probe microscopes

机译:使用扫描探针显微镜进行自动纳米处理的漂移补偿

获取原文
获取原文并翻译 | 示例

摘要

Manipulation of nanoparticles with atomic force microscopes (AFMs) has been under development for a decade and is now well established as a technique for prototyping nanodevices and for other applications. Until now, the manipulation process for particles with sizes of a few nanometers has been very labor intensive. This severely limits the complexity of the structures that can be built. Particle sizes on the order of 10 nm are comparable to the spatial uncertainties associated with AFM operation, and a user in the loop has been needed to compensate for these uncertainties. This paper addresses thermal drift, which is the major cause of errors for AFMs operating in ambient conditions. It is shown that drift can be estimated efficiently by using Kalman filtering techniques. This approach has firm theoretical foundations and is validated by the experimental results presented in this paper. Manipulation of groups of 15-nm particles is demonstrated under program control, without human intervention over a long period of time, in ambient air and at room temperature. Coupled with existing methods for high-level motion planning, the manipulation capabilities introduced here will permit assembling, from the bottom up, nanostructures that are more complex than those being built today with AFMs. Note to Practitioners-Nanomanipulation with scanning probe microscopes (SPMs) has potential applications in nanodevice and system prototyping, or in small-batch production if multitip arrays are used instead of single tips. However, SPM nanomanipulation is still being used primarily in research labs. A major obstacle to its wider use is the labor and time involved in the process. These are largely due to spatial uncertainty in the position of the tip (which is analogous to a robot's end effector) relative to the sample being manipulated. Today, a skilled user is needed to determine where the tip is and to correct manipulation errors due to inaccurate positional estimates. The major cause of this spatial uncertainty is thermal drift between the tip and the sample. At the time scales relevant to manipulation, the drift can reach values comparable to the size of the objects, especially if these are below /spl sim/10 nm. The techniques discussed in this paper compensate for the dri-ft and enable automated manipulation, with associated savings in time and labor, and increased complexity of the resulting structures.
机译:利用原子力显微镜(AFM)操纵纳米粒子已有十多年的历史,如今已被广泛确立为一种用于制作纳米器件原型和其他应用的技术。迄今为止,对几纳米大小的颗粒的处理过程非常费力。这严重限制了可以建造的结构的复杂性。 10 nm量级的颗粒大小可与AFM操作相关的空间不确定性相比较,并且需要环路中的用户来补偿这些不确定性。本文解决了热漂移问题,这是在环境条件下运行的AFM错误的主要原因。结果表明,使用卡尔曼滤波技术可以有效地估计漂移。该方法具有牢固的理论基础,并已通过本文提供的实验结果进行了验证。在程序控制下,在环境空气和室温下,无需长时间人为干预,就可以控制15 nm粒子的组。结合现有的高级运动计划方法,此处介绍的操纵功能将允许自下而上地组装比当今使用AFM制造的纳米结构更复杂的纳米结构。执业者注意-使用扫描探针显微镜(SPM)进行纳米操作在纳米设备和系统原型制作中,或者如果使用多针尖阵列而不是单针尖,则在小批量生产中具有潜在的应用。但是,SPM纳米操作仍主要用于研究实验室。广泛使用该方法的主要障碍是该过程涉及的劳力和时间。这些主要是由于尖端(相对于机器人的末端执行器)相对于被处理样品的位置存在空间不确定性。如今,需要熟练的用户来确定尖端在哪里,并纠正由于不正确的位置估计而导致的操作错误。这种空间不确定性的主要原因是尖端和样品之间的热漂移。在与操作相关的时间尺度上,漂移可以达到与对象大小相当的值,尤其是当这些值低于/ spl sim / 10 nm时。本文讨论的技术可以补偿漂移并实现自动操纵,同时节省时间和劳力,并提高最终结构的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号