首页> 外文期刊>IEEE transactions on automation science and engineering >Microscale hybrid devices powered by biological flagellar motors
【24h】

Microscale hybrid devices powered by biological flagellar motors

机译:由生物鞭毛马达驱动的微型混合动力设备

获取原文
获取原文并翻译 | 示例
           

摘要

We are developing a series of micro hybrid devices based on tethered flagellar motors. Examples of the devices include a microfluidic pump and a micro ac dynamo. The microfluidic pump is realized through the tethering of a harmless strain of Escherichia coli (E. coli) cells to a microelectromechanical-systems-based microchannel. Each E. coli cell is about 3 /spl mu/m long and 1 /spl mu/m in diameter, with several flagella that are driven at the base by molecular rotary motors. The operational principle of the micro pump is based on the viscous pumping effect where continuous rotation of tethered cells in a microfluidic channel forms a fluidic conveyor belt that "drags" fluid from one end of the channel to the other. We used hydrodynamic loading to synchronize cell rotation in order to maximize the fluid pumping capability. The micro dynamo is realized through the integration of tethered flagellar motors with micro ferromagnetic beads and micro copper coils. The micro dynamo generates ac power by using the tethered cells to create a rotating magnetic field around the copper coils. Preliminary results indicate high-power density when compared to other biologically-based micro power generators. Note to Practitioners-The power supply remains a problematic area in the advancement of micro and nanoscale electromechanical systems. Flagellar motors, when tethered in microfluidic devices, provide a unique biological means to supply either mechanical or electrical power to these systems with high-power conversion efficiency. A major advantage of flagellar motor-powered systems is the absence of sophisticated control electronics since the motors are biologically self-sustained, so long as a supply of nutrients is provided to the tethered motors. Additionally, flagellar motors are relatively cost effective; they can be harvested fairly easily from cell growth using established biological protocols. However, integrating flagellar motors with artificial devices is extremely challenging. One of the major obstacles is maintaining the motility of the tethered motors in a microfabricated environment. To overcome this, research work has been focused on optimizing the chemo-mechanical behavior of the motors through genetic engineering and the development of an effective -integration scheme for selective motor tethering at designated locations in a microfluidic device.
机译:我们正在开发一系列基于束缚鞭毛马达的微型混合动力设备。装置的示例包括微流体泵和微型交流发电机。微流体泵是通过将大肠杆菌(E. coli)无害菌株拴系到基于微机电系统的微通道来实现的。每个大肠杆菌细胞长约3个/ splμm/ m,直径为1个/ splμm/ m,其中有几个鞭毛由分子旋转马达在底部驱动。微型泵的工作原理基于粘性泵送效应,其中,微流体通道中系留细胞的连续旋转形成了一个流体输送带,该流体输送带将流体从通道的一端“拖拉”到另一端。我们使用流体动力加载来同步细胞旋转,以最大化流体泵送能力。微型发电机是通过将鞭毛鞭状马达与微型铁磁珠和微型铜线圈集成在一起来实现的。微型发电机通过使用拴系电池在铜线圈周围产生旋转磁场来产生交流电。初步结果表明,与其他基于生物的微型发电机相比,功率密度高。给从业者的注意-在微型和纳米级机电系统的发展中,电源仍然是一个有问题的领域。鞭毛马达在微流控设备中使用时,提供了独特的生物学手段,可以以高功率转换效率向这些系统提供机械或电力。鞭毛电动机驱动系统的主要优点是,由于电动机在生物学上是自持的,因此无需复杂的控制电子设备,只要向系留电动机提供营养即可。另外,鞭毛马达相对具有成本效益。使用既定的生物学方案,可以很容易地从细胞生长中收获它们。但是,将鞭毛马达与人工设备集成起来非常困难。主要障碍之一是在微加工环境中保持系留电机的动力。为了克服这个问题,研究工作集中在通过基因工程优化电动机的化学机械性能,以及开发一种有效的集成方案,以在微流体装置中的指定位置进行选择性的电动机束缚。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号