首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Neural Network Models to Anticipate Failures of Airport Ground Transportation Vehicle Doors
【24h】

Neural Network Models to Anticipate Failures of Airport Ground Transportation Vehicle Doors

机译:神经网络模型预测机场地面运输车辆门的故障

获取原文

摘要

This paper describes a case study of the development and testing of a prototype system to support condition-based maintenance of the door systems of airport transportation vehicles. Every door open/close cycle produces a ¿signature¿ that can indicate the current degradation level of the door system. A combined statistical and neural network approach was used. Time, electrical current and voltage signals from the open/close cycles are processed in real-time to estimate, using the neural network, the condition of the door set relative to maintenance needs. Data collection hardware for the vehicle was designed, developed and tested to monitor door characteristics to quickly predict degraded performance, and to anticipate failures. The prototype system was installed on vehicle door sets at the Pittsburgh International Airport and tested for several months under actual operating conditions.
机译:本文描述了一个原型系统的开发和测试案例,以支持基于条件的机场运输车辆门系统的维护。每个门的打开/关闭周期都会产生一个“ signature”,该信号可以指示门系统的当前降级水平。使用了组合的统计和神经网络方法。来自开/关周期的时间,电流和电压信号将实时进行处理,以使用神经网络估算门组相对于维护需求的状态。设计,开发和测试了用于车辆的数据收集硬件,以监控车门特性,以快速预测性能下降并预测故障。该原型系统安装在匹兹堡国际机场的车门装置上,并在实际运行条件下进行了几个月的测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号