首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Bending-Invariant Correspondence Matching on 3-D Human Bodies for Feature Point Extraction
【24h】

Bending-Invariant Correspondence Matching on 3-D Human Bodies for Feature Point Extraction

机译:用于特征点提取的3-D人体的弯曲不变对应匹配

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an automatic approach to match correspondences on 3-D human bodies in various postures so that feature points can be automatically extracted. The feature points are very important to the establishment of volumetric parameterization around human bodies for the human-centered customization of soft-products (Trans. Autom. Sci. Eng., vol. 4, issue no. 1, pp. 11–21, 2007). For a given template human model with a set of predefined feature points, we first down-sample the input model into a set of sample points. Then, the corresponding points of these samples on the human model are identified by minimizing the distortion with the help of a series of transformations regardless of their differences in postures, scales or positions. The basic idea of our algorithm is to transform the template human body to the shape of the input model iteratively. To generate a bending invariant mapping, the initial correspondence/transformation is computed in a multidimensional scaling (MDS) embedding domain of 3-D human models, where the Euclidean distance between two samples on a 3-D model in the MDS domain corresponds to the geodesic distance between them in $Re^3$ . As the posture change (i.e., the body bending) of a human model can be considered as approximately isometric in the intrinsic 3-D shape, the initial correspondences established in the MDS domain can greatly enhance the robustness of our approach in body bending. Once the correspondences between the surface samples on the template model and the input model are determined after iterative transformations, we have essentially found the corresponding feature points on the input model. Finally, the locations of the based local matching step.
机译:在本文中,我们提出了一种自动方法来匹配3D人体在各种姿势下的对应关系,以便可以自动提取特征点。这些特征点对于在人体周围建立体积参数化对于以人为中心的软产品定制非常重要(Trans。Autom。Sci。Eng。,第4卷,第1期,第11–21页, 2007)。对于具有一组预定义特征点的给定模板人体模型,我们首先将输入模型下采样为一组采样点。然后,借助于一系列变换,通过最小化失真来识别这些样本在人体模型上的对应点,而不管它们的姿势,比例或位置如何不同。我们算法的基本思想是将模板人体迭代地转换为输入模型的形状。为了生成弯曲不变映射,在3-D人体模型的多维缩放(MDS)嵌入域中计算初始对应关系/变换,其中MDS域中3-D模型上两个样本之间的欧式距离对应于它们之间的测地距离为$ Re ^ 3 $。由于人体模型的姿势变化(即身体弯曲)在固有的3D形状中可以视为近似等距,因此在MDS域中建立的初始对应关系可以大大增强我们在身体弯曲中的方法的鲁棒性。迭代转换后,一旦确定了模板模型上的表面样本与输入模型之间的对应关系,就可以在输入模型上找到相应的特征点。最后,是基于本地的本地匹配步骤的位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号