首页> 外文期刊>IEEE transactions on automation science and engineering >Optimization Algorithms for Kinematically Optimal Design of Parallel Manipulators
【24h】

Optimization Algorithms for Kinematically Optimal Design of Parallel Manipulators

机译:并联机械手运动学最优设计的优化算法

获取原文
获取原文并翻译 | 示例

摘要

Optimal design is an inevitable step for parallel manipulators. The formulated optimal design problems are generally constrained, nonlinear, multimodal, and even without closed-form analytical expressions. Numerical optimization algorithms are thus applied to solve the problems. However, the optimization algorithms are usually chosen ad arbitrium. This paper aims to provide a guideline to choose algorithms for optimal design problems. Typical algorithms, the sequential quadratic programming (SQP) with multiple initial points, the controlled random search (CRS), the genetic algorithm (GA), the differential evolution (DE), and the particle swarm optimization (PSO), are investigated in detail for their convergence performances by using two canonical design examples, the Delta robot and the Gough–Stewart platform. It is shown that SQP with multiple initial points can be efficient for simple design problems, while DE and PSO perform effectively and steadily for all design problems. CRS can be used to generate good initial points since it exhibits excellent convergence evolution in the starting period.
机译:最佳设计是并联机械手的必然步骤。制定的最佳设计问题通常是受约束的,非线性的,多峰的,甚至没有封闭形式的分析表达式。因此,采用数值优化算法来解决这些问题。但是,优化算法通常是任意选择的。本文旨在为选择最佳设计问题的算法提供指导。详细研究了典型算法,具有多个初始点的顺序二次规划(SQP),受控随机搜索(CRS),遗传算法(GA),差分演化(DE)和粒子群优化(PSO)。通过使用两个规范设计示例Delta机器人和Gough–Stewart平台来实现其融合性能。结果表明,具有多个初始点的SQP可以有效解决简单的设计问题,而DE和PSO可以有效且稳定地解决所有设计问题。 CRS可用于生成良好的初始点,因为它在开始阶段表现出出色的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号