首页> 外文期刊>IEEE transactions on automation science and engineering >A Multiagent Q-Learning-Based Optimal Allocation Approach for Urban Water Resource Management System
【24h】

A Multiagent Q-Learning-Based Optimal Allocation Approach for Urban Water Resource Management System

机译:基于多主体Q学习的城市水资源管理系统最优分配方法

获取原文
获取原文并翻译 | 示例

摘要

Water environment system is a complex system, and an agent-based model presents an effective approach that has been implemented in water resource management research. Urban water resource optimal allocation is a challenging and critical issue in water environment systems, which belongs to the resource optimal allocation problem. In this paper, a novel approach based on multiagent Q-learning is proposed to deal with this problem. In the proposed approach, water users of different regions in the city are abstracted into the agent-based model. To realize the cooperation among these stakeholder agents, a maximum mapping value function-based Q-learning algorithm is proposed in this study, which allows the agents to self-learn. In the proposed algorithm, an adaptive reward value function is used to improve the performance of the multiagent Q-learning algorithm, where the influence of multiple factors on the optimal allocation can be fully considered. The proposed approach can deal with various situations in urban water resource allocation. The experimental results show that the proposed approach is capable of allocating water resource efficiently and the objectives of all the stakeholder agents can be successfully achieved.
机译:水环境系统是一个复杂的系统,基于主体的模型提出了一种有效的方法,已经在水资源管理研究中得以实施。城市水资源优化配置是水环境系统中一个具有挑战性和关键性的问题,属于资源优化配置问题。针对这种问题,本文提出了一种基于多智能体Q学习的新方法。在提出的方法中,将城市中不同地区的用水者抽象为基于主体的模型。为了实现这些利益相关者主体之间的合作,本研究提出了一种基于最大映射值函数的Q学习算法,使主体能够进行自学习。该算法采用自适应奖励值函数来提高多主体Q学习算法的性能,可以充分考虑多种因素对最优分配的影响。所提出的方法可以处理城市水资源分配中的各种情况。实验结果表明,该方法能够有效地分配水资源,可以成功实现所有利益相关者的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号