首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Estimating Clearing Functions for Production Resources Using Simulation Optimization
【24h】

Estimating Clearing Functions for Production Resources Using Simulation Optimization

机译:使用模拟优化估算生产资源的清算功能

获取原文
获取原文并翻译 | 示例

摘要

We implement a gradient-based simulation optimization approach, the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, to estimate clearing functions (CFs) that describe the expected output of a production resource as a function of its expected workload from empirical data. Instead of trying to optimize the fit of the CF to the data, we seek values of the CF parameters that optimize the expected performance for the system when the fitted CFs are used to develop release schedules. A simulation model of a scaled-down wafer fabrication facility is used to generate the data and evaluate the performance of the CFs obtained from the SPSA. We show that SPSA significantly improves the production plan by either searching for better CF parameters or by directly optimizing releases.
机译:我们实现了基于梯度的模拟优化方法,即同时扰动随机逼近(SPSA)算法,以估计清算函数(CF),该函数根据经验数据将生产资源的预期输出描述为其预期工作量的函数。我们没有尝试优化CF与数据的拟合度,而是寻求CF参数的值,这些参数可以在使用拟合的CF制定发布计划时优化系统的预期性能。使用按比例缩小的晶圆制造厂的仿真模型来生成数据并评估从SPSA获得的CF的性能。我们显示SPSA通过搜索更好的CF参数或通过直接优化发布来显着改善了生产计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号